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Abstract

We show that additive and asymptotically additive families of continuous functions
with respect to suspension flows are physically equivalent. In particular, the equiv-
alence result holds for hyperbolic flows. We also obtain an equivalence relation for
expansive flows. Moreover, we show how this equivalence result can be used to extend
the nonadditive thermodynamic formalism and multifractal analysis for flows.

1 Introduction

Let X be a topological space and T : X → X a map. A sequence of functions (fn)n≥1 is
asymptotically additive with respect to T if for each ε > 0 there exists a function f : X → R

such that

lim sup
n→∞

1

n
‖fn − Snf‖∞ < ε,

where Snf :=
∑n−1

k=0 f ◦ T k and ‖ · ‖∞ is the supremum norm. Notice that the sequence
(Snf)n≥1 is additive with respect to T , that is,

Sm+nf(x) = Smf(x) + Snf(T
m(x)) for all x ∈ X and m,n ≥ 1.

A sequence F = (fn)n≥1 is almost additive with respect to T if there exists C > 0 such
that

−C + fm(x) + fn(T
m(x)) ≤ fm+n(x) ≤ fm(x) + fn(T

m(x)) +C

for every x ∈ X and all m,n ≥ 1. It was showed in [FH10] that almost additive sequences
are in fact asymptotically additive.

Inspired by statistical mechanics, as in [Cun20], we say that two nonadditive sequences
of functions F := (fn)n≥1 and G := (gn)n≥1 are physically equivalent, or F is physically
equivalent to G, if

lim
n→∞

1

n
‖fn − gn‖∞ = 0.
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Surprisingly, N. Cuneo showed in [Cun20] that asymptotically additive sequences are
physically equivalent to additive sequences with respect to a continuous map. This result
has a direct impact in the study of nonadditive thermodynamic formalism and multifractal
analysis for discrete-time dynamical systems (see [Cun20] and references within).

Motivated by the nonadditive thermodynamic formalism and multifractal analysis for
flows, and inspired by Cuneo’s equivalence theorem, in this paper we investigate the same
equivalence problem in the case of continuous flows.

Let Φ = (φt)t∈R be a continuous flow on a topological space X. A family a = (at)t≥0

of functions at : X → R is said to be almost additive with respect to Φ on X if there exists
a constant C > 0 such that

−C + at + as ◦ φt ≤ at+s ≤ at + as ◦ φt + C

for every t, s ≥ 0.
We also say that a family of functions a = (at)t≥0 is asymptotically additive with respect

to Φ on X if for each ε > 0 there exists a function bε : X → R such that

lim sup
t→∞

1

t

∥∥∥∥at −
∫ t

0
(bε ◦ φs)ds

∥∥∥∥
∞

≤ ε.

Proceeding as in [FH10], one can see that every almost additive family of functions is
asymptotically additive.

Following the definition for discrete-time dynamical systems, we say that two families of
functions a = (at)t≥0 and b = (bt)t≥0 are physically equivalent, or a is physically equivalent
to b, with respect to the flow Φ if

lim
t→∞

1

t
‖at − bt‖∞ = 0.

We observe that physically equivalent almost additive families have the same topological
pressure and share the same equilibrium measures (see [BH21a]). Moreover, they also share
the same level sets and the same maximizing measures in the sense of ergodic optimization
(see for example [BD09], [BH21b], [BHVZ21], [HLMXZ19] and [MSV20]).

In the present work, we show that asymptotically additive families of continuous func-
tions are physically equivalent to additive families of continuous functions with respect to
suspension flows, and in particular, hyperbolic flows and expansive flows admitting a mea-
sure of full support. As in the discrete-time case, this physical equivalence result for flows
has the potential to facilitate and simplify many extensions of the nonadditive thermody-
namic formalism, multifractal analysis and even ergodic optimization for flows in general
(see section 3).

We also attacked the full problem of equivalence with respect to continuous flows in gen-
eral, and it turns out that this problem is intrinsically connected to the following dynamical
embedding problem, which is also stated as an open question in [BHVZ21]:
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Given a continuous flow Φ on a metric space X and a continuous function b̃ : X → R,
is there a continuous function b : X → R such that

b̃ =

∫ 1

0
(b ◦ φs)ds ?

We stress here that a positive answer for this embedding problem implies a positive
answer for the general physical equivalence problem.

In this work we are able to describe a sufficient condition on the function and on
the flow where the dynamical embedding problem can be answered affirmatively. On the
other hand, we also give a simple counter-example, showing that the embedding problem
cannot be solved in full generality (see section 2.5). Overall, concerning the general physical
equivalence problem, we give a positive answer in the case of continuous flows with uniquely
ergodic time-one maps. However, as far as we know, the equivalence problem in full
generality remains open.

The paper is organized as follows. We start proving our main equivalence result for
suspension flows and, consequently, for hyperbolic flows. In the following, we also give nat-
ural sources of almost and asymptotically additive families of continuous functions. After
that, we proceed to show how to extend the equivalence theorem to a class of expansive
flows using the very recent work [GS22]. We finish section 2 with the general physical
equivalence problem for continuous flows. In the final section, we conclude with some
applications and consequences of the equivalence theorem, extending parts of the nonad-
ditive thermodynamic formalism and multifractal analysis for continuous-time dynamical
systems.

2 Main results

In this section, we are going to show that additive and asymptotically additive families of
continuous functions are physically equivalent with respect to suspension flows and also
with respect to some expansive flows. Moreover, we are going to give some natural exam-
ples of asymptotically additive families and also explore the general problem of physical
equivalence for continuous flows.

2.1 Suspension flows

Let X be a compact metric space, T : X → X a homeomorphism and τ : X → (0,∞) a
positive continuous function. Consider the space

W =
{
(x, s) ∈ X × R : 0 ≤ s ≤ τ(x)

}

and let Y be the set obtained from W identifying (x, τ(x)) with (T (x), 0) for each x ∈ X.
Then a certain distance introduced by Bowen and Walters in [BW72] makes Y a compact
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metric space. The suspension flow over T with height function τ is the flow Φ = (φt)t∈R
on Y with the maps φt : Y → Y defined by φt(x, s) = (x, s + t).

Let µ be a T -invariant probability measure on X. One can show that µ induces a
Φ-invariant probability measure ν on Y such that

∫

Λ
g dν =

∫
X
Ig dµ∫

X
τ dµ

for any continuous function g : Y → R, where Ig(x) =
∫ τ(x)
0 (g ◦ φs)(x) ds. Conversely, any

Φ-invariant probability measure ν on Y is of this form for some T -invariant probability
measure µ on X. Abramov’s entropy formula says that

hν(Φ) =
hµ(T )∫
X
τ dµ

.

The next result establishes the physical equivalence between asymptotically additive
and additive families of functions with respect to suspension flows.

Theorem 1. Let Φ = (φt)t∈R be a suspension flow over a continuous map T : X → X
and a = (at)t≥0 be an asymptotically additive family of continuous functions with respect
to Φ. Then, there exists a continuous function b : Y → R such that

lim
t→∞

1

t

∥∥∥∥at −
∫ t

0
(b ◦ φs)ds

∥∥∥∥
∞

= 0.

Consider the sequence of continuous functions c = (cn)n≥1 on X given by cn(x) =
aτn(x)(x), where

τn(x) =

n−1∑

k=0

τ(T k(x)) for every x ∈ X.

Lemma 1. There exists a continuous function ξ : X → R such that

lim
n→∞

1

n
sup
x∈X

∣∣∣∣cn(x)−
n−1∑

k=0

ξ(T k(x))

∣∣∣∣ = 0. (1)

Proof. Since a is asymptotically additive with respect to the flow Φ, for each ε > 0 there
exists a continuous function bε : Y → R such that

lim sup
t→∞

1

t

∥∥∥∥at −
∫ t

0
(bε ◦ φs)ds

∥∥∥∥
∞

≤ ε. (2)

It follows from the proof of Lemma 15 in [BH21b] that

∫ τn(x)

0
(bε ◦ φs)(x)ds =

n−1∑

k=0

(Ibε ◦ T
k)(x) for every x ∈ Y and n ≥ 1.
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Notice that for each t > 0 there exists a unique n ∈ N such that τn(x) ≤ t ≤ τn+1(x) with
t− τn(x) ∈ [0, sup τ). Then, in particular from (2), we have

lim sup
n→∞

1

n
sup
x∈X

∣∣∣∣cn(x)−
n−1∑

k=0

(Ibε ◦ T
k)(x)

∣∣∣∣

= lim sup
n→∞

1

τn(x)

(
τn(x)

n

)
sup
x∈X

∣∣∣∣aτn(x)(x)−
∫ τn(x)

0
(bε ◦ φs)(x)ds

∣∣∣∣ ≤ ε sup τ

(3)

for any x ∈ X. Since ε > 0 is arbitrarily small, this implies that the sequence c is
asymptotically additive with respect to the map T : X → X. Now we can apply Theorem
1.2 in [Cun20] to guarantee the existence of a continuous function ξ : X → R satisfying
(1), as desired.

Lemma 2. There exists a continuous function b : Y → R such that Ib|X = ξ.

Proof. Following [BRW04], we can just define b : Y → R as

b(φs(x)) =
ξ(x)

τ(x)
ψ′

(
s

τ(x)

)

for each x ∈ X and s ∈ [0, τ(x)], where ψ : [0, 1] → [0, 1] is any nondecreasing C1 function
such that ψ(0) = 0, ψ(1) = 1 and ψ′(0) = ψ′(1) = 0.

Lemma 3. We have

lim sup
t→∞

1

t
sup
x∈X

|at(x)− aτn(x)(x)| = 0.

Proof. Since a is asymptotically aditive, for each ε > 0 there exists bε : Y → R such that

lim sup
t→∞

1

t

∥∥∥∥at −
∫ t

0
(bε ◦ φs)ds

∥∥∥∥
∞

≤ ε.

Moreover, following as in the proof of Lemma 15 in [BH21b], one can check that for each
t > 0 there exists a unique n ∈ N with t = τn(x) + κ for some κ ∈ [0, sup τ ] such that

∣∣∣∣
∫ t

0
(bε ◦ φs)(x)ds −

n−1∑

k=0

(Ibε ◦ T
k)(x)

∣∣∣∣ ≤ ‖bε‖∞ sup τ.

Then, since

sup
x∈X

|at(x)− aτn(x)(x)| ≤ sup
x∈X

∣∣∣∣at(x)−
∫ t

0
(bε ◦ φs)(x)ds

∣∣∣∣

+ sup
x∈X

∣∣∣∣
∫ t

0
(bε ◦ φs)(x)ds −

n−1∑

k=0

(Ibε ◦ T
k)(x)

∣∣∣∣

+ sup
x∈X

∣∣∣∣cn(x)−
n−1∑

k=0

(Ibε ◦ T
k)(x)

∣∣∣∣
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for every t ≥ 0, it follows from (3) that

lim sup
t→∞

1

t
sup
x∈X

|at(x)− aτn(x)(x)| ≤ ε(1 + sup τ) + lim sup
t→∞

1

t
(‖bε‖∞ sup τ) = ε(1 + sup τ).

Hence, letting ε→ 0 we obtain

lim sup
t→∞

1

t
sup
x∈X

|at(x)− aτn(x)(x)| = 0,

as desired.

Proof of Theorem 1. Using Lemma 2, let b : Y → R be a function such that Ib|X = ξ
and define the family of continuous functions ∆ := (∆t)t≥0 as

∆t(x) := at(x)−

∫ t

0
(b ◦ φs)(x)ds for all x ∈ Y and t ≥ 0. (4)

For each x ∈ X, we have

lim sup
t→∞

1

t
sup
x∈X

|∆t(x)| ≤ lim sup
t→∞

1

t
sup
x∈X

∣∣∣∣aτn(x)(x)−
∫ τn(x)

0
(b ◦ φs)(x)ds

∣∣∣∣

+ lim sup
t→∞

1

t
sup
x∈X

|at(x)− aτn(x)(x)|

+ lim sup
t→∞

1

t
sup
x∈X

∣∣∣∣
∫ τn(x)

0
(b ◦ φs)(x)ds −

∫ t

0
(b ◦ φs)(x)ds

∣∣∣∣

≤

(
1

inf τ

)
lim sup
n→∞

1

n
sup
x∈X

∣∣∣∣cn(x)−
n−1∑

k=0

ξ(T k(x))

∣∣∣∣

+ lim sup
t→∞

1

t
sup
x∈X

(|at(x)− aτn(x)(x)| + ‖b‖∞ sup τ).

Hence, it follows from the lemmas 1 and 3 that

lim sup
t→∞

1

t
sup
x∈X

|∆t(x)| = 0. (5)

We claim that

lim sup
t→∞

1

t
sup

s∈[0,τ ]
sup
x∈X

|∆t(φs(x))| = 0.

By the asymptotic additivity of a, given ε > 0 there exists bε : Y → R such that, in
particular,

lim sup
t→∞

1

t
sup
x∈X

∣∣∣∣at(x)−
∫ t

0
(bε ◦ φu)(x)du

∣∣∣∣ ≤ ε and (6)
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lim sup
t→∞

1

t− s
sup
x∈X

∣∣∣∣at−s(φs(x))−

∫ t−s

0
(bε ◦ φu+s)(x)du

∣∣∣∣ ≤ ε for every s ∈ [0, sup τ ]. (7)

Since

sup
x∈X

|at−s(φs(x))− at(x)| ≤ sup
x∈X

∣∣∣∣at−s(φs(x))−

∫ t−s

0
(bε ◦ φu+s)(x)du

∣∣∣∣

+ sup
x∈X

∣∣∣∣at(x)−
∫ t

0
(bε ◦ φu)(x)du

∣∣∣∣ + sup
x∈X

∣∣∣∣
∫ t

s

(bε ◦ φu)(x)du −

∫ t

0
(bε ◦ φu)(x)du

∣∣∣∣

≤ sup
x∈X

∣∣∣∣at−s(φs(x)) −

∫ t−s

0
(bε ◦ φu+s)(x)du

∣∣∣∣ + sup
x∈X

∣∣∣∣at(x)−
∫ t

0
(bε ◦ φu)(x)du

∣∣∣∣

+ ‖bε‖∞ sup τ

for every t ≥ s and s ∈ [0, sup τ ], it follows from (6) and (7) that

1

t
sup

s∈[0,τ ]
sup
x∈X

|at−s(φs(x))− at(x)| ≤ 2ε+ 2ε+ ε = 5ε for t sufficiently large.

Then, the arbitrariness of ε gives that

lim sup
t→∞

1

t
sup

s∈[0,τ ]
sup
x∈X

|at−s(φs(x))− at(x)| = 0. (8)

From (4) one can check that

sup
s∈[0,τ ]

sup
x∈X

|∆t−s(φs(x))−∆t(x)| ≤ sup
s∈[0,τ ]

sup
x∈X

|at−s(φs(x))− at(x)| + ‖b‖∞ sup τ

for every t ≥ s. Hence, it follows from (8) that

lim sup
t→∞

1

t
sup

s∈[0,τ ]
sup
x∈X

|∆t−s(φs(x))−∆t(x)| = 0. (9)

Now observing that

sup
s∈[0,τ ]

sup
x∈X

|∆t−s(φs(x))| ≤ sup
s∈[0,τ ]

sup
x∈X

|∆t−s(φs(x))−∆t(x)|+ sup
x∈X

|∆t(x)|

for every t ≥ s, from (5) and (9) we get

lim sup
t→∞

1

t
sup

s∈[0,τ ]
sup
x∈X

|∆t(φs(x))| = 0,

and the claim is proved.
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Now for each y ∈ Y there exist x ∈ X and s ∈ [0, sup τ ] such that y = φs(x). Then

|∆t(y)| = |∆t(φs(x))| ≤ sup
s∈[0,τ ]

sup
x∈X

|∆t(φs(x))| for each t ≥ 0,

which readily implies that

lim sup
t→∞

1

t
‖∆t‖∞ ≤ lim sup

t→∞

1

t
sup

s∈[0,τ ]
sup
x∈X

|∆t(φs(x))| = 0.

Since, in particular, ∆n is asymptotically aditive with respect to the map φ1 on Y , Lemma
A.3 in [FH10] guarantees that the limit limt→∞

1
t
‖∆t‖∞ exists. Therefore

lim
t→∞

1

t
‖∆t‖∞ = 0,

and the theorem is proved.

Definition 1. Let X and Y be topological spaces and consider the flows Φ on X and Ψ on
Y . We say that (X,Φ) is topologically conjugate to (Y,Ψ) if there exists an homeomorphism
h : X → Y such that (h ◦ φt)(x) = (ψt ◦ h)(x) for every t ∈ R and every x ∈ X. Moreover,
we say that (X,Φ) is Cr-conjugate to (Y,Ψ) if h is Cr.

Corollary 2. Let Φ = (φt)t∈R be a continuous flow on a compact metric space M . Suppose
that Φ is topologically conjugate to a suspension flow. Then, for every asymptotically
additive family of continuous functions a = (at)t∈R there exists a continuous function
b :M → R such that

lim
t→∞

1

t

∥∥∥∥at −
∫ t

0
(b ◦ φs)ds

∥∥∥∥
∞

= 0.

Proof. Let Ψ be a suspension flow on a compact metric space N and h :M → N the home-
omorphism conjugating (M,Φ) and (N,Ψ). Suppose that a = (at)t≥0 is an asymptotically
additive family of continuous functions with respect to Φ. One can easily check that the
family (at ◦ h

−1)t≥0 is asymptotically additive with respect to Ψ. By Theorem 1, there

exists a continuous function b̃ : N → R such that

lim
t→∞

1

t
sup
y∈N

∣∣∣∣(at ◦ h
−1)(y) −

∫ t

0
(̃b ◦ ψs)(y)ds

∣∣∣∣ = 0.

Since for each y ∈ N there exists a unique x ∈M such that h(x) = y, we have
∣∣∣∣at(h

−1(y)) −

∫ t

0
(̃b ◦ ψs)(y)ds

∣∣∣∣ =
∣∣∣∣at(x)−

∫ t

0
((̃b ◦ h) ◦ φs)(x)ds

∣∣∣∣.

Hence

lim
t→∞

1

t
sup
x∈M

∣∣∣∣at(x)−
∫ t

0
(b ◦ φs)(x)ds

∣∣∣∣ = 0,

where b := b̃ ◦ h :M → R.
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Example 1. Let Tn := R/Z × · · · × R/Z be the n-torus. Letting α ∈ R
n, the linear flow

Φ = (φt)t∈R on T
n in the direction α is defined by φt(x) = x+ tα mod 1.

One can see that every linear flow on the n-torus is C∞- conjugate to a suspension flow
(see for example [FH20]). Then, it follows from Corollary 2 that asymptotically additive
and additive families of continuous functions are physically equivalent with respect to the
flow Φ.

2.2 Hyperbolic flows and Markov partitions

Let Φ = (φt)t∈R be a C1 flow on a smooth manifold M . A compact Φ-invariant set Λ ⊂M
is called a hyperbolic set for Φ if there exists a splitting

TΛM = Es ⊕ Eu ⊕ E0

and constants c > 0 and λ ∈ (0, 1) such that for each x ∈ Λ:

1. the vector (d/dt)φt(x)|t=0 generates E0(x);

2. for each t ∈ R we have

dxφtE
s(x) = Es(φt(x)) and dxφtE

u(x) = Eu(φt(x));

3. ‖dxφtv‖ ≤ cλt‖v‖ for v ∈ Es(x) and t > 0;

4. ‖dxφ−tv‖ ≤ cλt‖v‖ for v ∈ Eu(x) and t > 0.

Given a hyperbolic set Λ for a flow Φ, for each x ∈ Λ and any sufficiently small ε > 0 we
define

As(x) =
{
y ∈ B(x, ε) : d(φt(y), φt(x)) ց 0 when t→ +∞

}

and
Au(x) =

{
y ∈ B(x, ε) : d(φt(y), φt(x)) ց 0 when t→ −∞

}
.

Moreover, let V s(x) ⊂ As(x) and V u(x) ⊂ Au(x) be the largest connected components
containing x. These are smooth manifolds, called respectively (local) stable and unstable
manifolds of size ε at the point x, satisfying:

1. TxV
s(x) = Es(x) and TxV

u(x) = Eu(x);

2. for each t > 0 we have

φt(V
s(x)) ⊂ V s(φt(x)) and φ−t(V

u(x)) ⊂ V u(φ−t(x));

3. there exist κ > 0 and µ ∈ (0, 1) such that for each t > 0 we have

d(φt(y), φt(x)) ≤ κµtd(y, x) for y ∈ V s(x)

and
d(φ−t(y), φ−t(x)) ≤ κµtd(y, x) for y ∈ V u(x).

9



We recall that a set Λ is said to be locally maximal (with respect to a flow Φ) if there exists
an open neighborhood U of Λ such that

Λ =
⋂

t∈R

φt(U).

Given a locally maximal hyperbolic set Λ and a sufficiently small ε > 0, there exists δ > 0
such that if x, y ∈ Λ satisfy d(x, y) ≤ δ, then there exists a unique t = t(x, y) ∈ [−ε, ε] such
that

[x, y] := V s(φt(x)) ∩ V
u(x)

is a single point in Λ.
Now let us recall the notion of Markov partitions for continuous-time dynamical sys-

tems. Consider an open smooth disk D ⊂ M of dimension dimM − 1 that is transverse
to Φ and take x ∈ D. Let U(x) be an open neighborhood of x diffeomorphic to D×(−ε, ε).
Then the projection πD : U(x) → D defined by πD(φt(y)) = y is differentiable. We say
that a closed set R ⊂ Λ ∩D is a rectangle if R = intR and πD([x, y]) ∈ R for x, y ∈ R.

Consider rectangles R1, . . . , Rk ⊂ Λ (each contained in some open smooth disk trans-
verse to the flow) such that

Ri ∩Rj = ∂Ri ∩ ∂Rj for i 6= j.

Let Z =
⋃k

i=1Ri. We assume that there exists ε > 0 such that:

1. Λ =
⋃

t∈[0,ε] φt(Z);

2. whenever i 6= j, either

φt(Ri) ∩Rj = ∅ for all t ∈ [0, ε]

or
φt(Rj) ∩Ri = ∅ for all t ∈ [0, ε].

Now define the function τ : Λ → R
+
0 by

τ(x) = min{t > 0 : φt(x) ∈ Z},

and the map T : Λ → Z by
T (x) = φτ(x)(x). (10)

The restriction TZ of T to Z is invertible and we have T n(x) = φτn(x)(x), where

τn(x) =

n−1∑

i=0

τ(T i(x)).
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The collection R1, . . . , Rk is said to be a Markov partition for Φ on Λ if

T (int(V s(x) ∩Ri)) ⊂ int(V s(T (x)) ∩Rj)

and
T−1(int(V u(T (x)) ∩Rj)) ⊂ int(V u(x) ∩Ri)

for every x ∈ intT (Ri)∩ intRj and i, j = 1, . . . , k. By work of Bowen [Bow73] and Ratner
[Rat73], any locally maximal hyperbolic set Λ has Markov partitions of arbitrarily small
diameter and the function τ is Hölder continuous on each domain of continuity.

Given a Markov partition R1, . . . , Rk for a flow Φ on a locally maximal hyperbolic set
Λ, we consider the k × k matrix A with entries

aij =

{
1 if intT (Ri) ∩Rj 6= ∅,

0 otherwise,

where T is the map in (10). We also consider the set

ΣA =
{
(· · · i−1i0i1 · · · ) : ainin+1

= 1 for n ∈ Z
}
⊂ {1, . . . , k}Z

and the shift map σ : ΣA → ΣA defined by σ(· · · i0 · · · ) = (· · · j0 · · · ), where jn = in+1

for each n ∈ Z. We denote by Σn the set of ΣA-admissible sequences of length n, that
is, the finite sequences (i1 · · · in) for which there exists (· · · j0j1j2 · · · ) ∈ ΣA such that
(i1 . . . in) = (j1 · · · jn). Finally, we define a coding map π : ΣA → Z by

π(· · · i0 · · · ) =
⋂

n∈Z

Ri−n···in ,

where Ri−n···in =
⋂n

l=−n T
−l
Z intRil . The following properties hold:

1. π ◦ σ = T ◦ π;

2. π is Hölder continuous and onto;

3. π is one-to-one on a full measure set with respect to any ergodic measure of full
support and on a residual set.

Given β > 1, we equip ΣA with the distance dβ defined by

dβ(ω, ω
′) =

{
β−n if ω 6= ω′,

0 if ω = ω′,

where n = n(ω, ω′) ∈ N ∪ {0} is the smallest integer such that in(ω) 6= in(ω
′) or i−n(ω) 6=

i−n(ω
′). One can always choose β so that τ ◦ π is Lipschitz.
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Now let ν be a TZ -invariant probability measure on Z. One can show that ν induces a
Φ-invariant probability measure µ on Λ such that

∫

Λ
g dµ =

∫
Z

∫ τ(x)
0 (g ◦ φs)(x) ds dν∫

Z
τ dν

(11)

for any continuous function g : Λ → R. In fact, any Φ-invariant probability measure µ on
Λ is of this form for some TZ -invariant probability measure ν on Z. Abramov’s entropy
formula says that

hµ(Φ) =
hν(TZ)∫
Z
τ dν

. (12)

By (11) and (12) we obtain

hµ(Φ) +

∫

Λ
g dµ =

hν(TZ) +
∫
Z
Ig dν∫

Z
τ dν

, (13)

where Ig(x) =
∫ τ(x)
0 (g ◦ φs)ds. Since τ > 0 on Z, it follows from (13) that

PΦ(g) = 0 if and only if PTZ
(Ig) = 0,

where PΦ(g) is the topological pressure of g with respect to Φ and PTZ
(Ig) is the topological

pressure of Ig with respect to the map TZ . When PΦ(g) = 0, this implies that µ is an
equilibrium measure for g if and only if ν is an equilibrium measure for Ig.

As a direct consequence of the existence of Markov partitions for locally maximal hy-
perbolic sets together with Theorem 1, we obtain the following result:

Corollary 3. Let Λ be a locally maximal hyperbolic set for a C1 flow Φ = (φt)t∈R and
suppose that a = (at)t≥0 is an asymptotically additive family of continuous functions with
respect to Φ. Then, there exists a continuous function b : Λ → R such that

lim
t→∞

1

t

∥∥∥∥at −
∫ t

0
(b ◦ φs)ds

∥∥∥∥
∞

= 0.

2.3 Expansive flows

Let (X, d) be a metric space and T : X → X a dynamical system. T is said to be expansive
if there exists δ > 0 such that d(T n(x), T n(y)) < δ for all n ∈ Z implies x = y.

The definition for continuous-time dynamical systems is more refined. A flow Φ on X
is said to be expansive if for each ε > 0 there exists δ > 0 such that if d(φt(x), φs(t)(y)) < δ
for all t ∈ R, for points x and y and a continuous map s : R → R with s(0) = 0, then there
exists a time |t| < ε such that φt(x) = y (see [BW72]).

Let X and Y be metric spaces and consider the flows Φ on X and Ψ on Y . Suppose
that π : Y → X is a topological extension from (X,Φ) to (Y,Ψ), that is, a surjective
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map topologically conjugating (Φ,X) and (Ψ, Y ). The extension π : Y → X is said to be
strongly isomorphic if there exists a full set E ⊂ X such that π : π−1(E) ⊂ Y → X is
one-to-one (see for example [Bur19]).

Advancing the main results in [Bur19], recently Gutman and Shi proved the following:

Theorem 4 ([GS22, Theorem B]). Let X be a compact finite-dimensional space and Φ
an expansive flow on X. Then, (X,Φ) is strongly isomorphic to a suspension flow over a
subshift of finite type.

This result together with Theorem 1 gives the following:

Theorem 5. Let Φ = (φt)t∈R be a continuous expansive flow on a compact finite-dimensional
metric spaceM , and let a = (at)t≥0 be an asymptotically additive family of continuous func-
tions. Then, there exists a continuous function b : M → R and a full set N ⊂ M such
that

lim
t→∞

1

t
sup
x∈N

∣∣∣∣at(x)−
∫ t

0
(b ◦ φs)(x)ds

∣∣∣∣ = 0. (14)

Moreover, if Φ admits an invariant measure with full support then

lim
t→∞

1

t

∥∥∥∥at −
∫ t

0
(b ◦ φs)ds

∥∥∥∥
∞

= 0.

Proof. By Theorem 4, there exists a full set N ⊂ X such that (N,Φ) and (Y,Ψ) are
topologically conjugate, where Ψ is a suspension flow over a subshift of finite type. Then,
(14) follows directly from Corollary 2.

Now suppose that ν ∈ M(Φ) is a measure with full support. Then, one can see that N
is dense on the whole space M . Since the function

x 7→ Dt(x) :=

∣∣∣∣at(x)−
∫ t

0
(b ◦ φs)(x)ds

∣∣∣∣

is continuous for every t ≥ 0, we have supDt(M) = supDt(N) ≤ supDt(N) = supDt(N)
for every t ≥ 0. This together with (14) yield

lim
t→∞

1

t

∥∥∥∥at −
∫ t

0
(b ◦ φs)ds

∥∥∥∥
∞

= lim
t→∞

1

t
sup
x∈M

Dt(x) ≤ lim
t→∞

1

t
sup
x∈N

Dt(x) = 0,

and the theorem is proved.

The following result is a weaker notion of equivalence in the case of expansive flows.

Corollary 6. Let Φ = (φt)t∈R be a continuous expansive flow on a compact finite-dimensional
metric space M , and let a = (at)t≥0 be an asymptotically additive family of continuous
functions. Then, there exists a continuous function b :M → R such that

lim
t→∞

1

t

∫

M

atdµ =

∫

M

bdµ

for every measure µ ∈ M(Φ).

13



Proof. It follows directly from Theorem 5 and Birkhoff’s ergodic theorem.

Observe that volume preserving continuous expansive flows on compact finite-dimensional
manifolds satisfy all the hypotheses of Theorem 5.

2.4 Examples: conformal and non-conformal hyperbolic flows

We will now introduce a source of asymptotically additive families of continuous potentials.

2.4.1 Conformal flows

We say that a C1 flow Φ is conformal on a hyperbolic set Λ if there exist continuous
functions Qs, Qu : Λ× R → R such that

dxφt|E
s(x) = Qs(x, t)Js(x, t) and dxφt|E

u(x) = Qu(x, t)Ju(x, t)

for every x ∈ Λ and t ∈ R, where

Js(x, t) : Es(x) → Es(φt(x)) and Ju(x, t) : Eu(x) → Eu(φt(x))

are isometries. For example, if

dimEs(x) = dimEu(x) = 1 for x ∈ Λ,

then the flow is conformal on Λ. Proceeding as in [PS01] we define:

Ξs(x) :=
∂

∂t
log |Qs(x, t)|t=0 =

∂

∂t
log ‖dxφt|E

s(x)‖t=0 = lim
t→0

log ‖dxφt|E
s(x)‖

t
(15)

and

Ξu(x) :=
∂

∂t
log |Qu(x, t)|t=0 =

∂

∂t
log ‖dxφt|E

u(x)‖t=0 = lim
t→0

log ‖dxφt|E
u(x)‖

t
. (16)

Since the flow Φ is of class C1, using 2-norms one can write

lim
t→0

log ‖dxφt|E
s(x)‖

t
= lim

t→0

log(‖dxφt|E
s(x)‖2)

2t
= lim

t→0

〈dxφt|E
s(x), ∂

∂t
(dxφt|E

s(x))〉

‖dxφt|Eu(x)‖2

=

〈
Id|Es(x),

∂

∂t
(dxφt|E

s(x))|t=0

〉

and, similarly,

lim
t→0

log ‖dxφt|E
u(x)‖

t
=

〈
Id|Eu(x),

∂

∂t
(dxφt|E

u(x))|t=0

〉
.
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In particular, the functions Ξs and Ξu are well defined. For an adapted norm ‖·‖ (that is,
a norm for which one can take c = 1 in the definition of a hyperbolic set), we obtain

Ξs(x) = lim
t→0+

log ‖dxφt|E
s(x)‖

t
≤ log λ < 0

and

Ξu(x) = lim
t→0+

log ‖dxφt|E
u(x)‖

t
≥ − log λ > 0

for all x ∈ Λ. Moreover, for every x ∈ Λ and t ∈ R, it follows from (15) and (16) that

‖dxφtv‖ = ‖v‖ exp

(∫ t

0
Ξs(φτ (x)) dτ

)
for v ∈ Es(x) (17)

and

‖dxφtv‖ = ‖v‖ exp

(∫ t

0
Ξu(φτ (x)) dτ

)
for v ∈ Eu(x). (18)

In this case, notice that

(log ‖dxφt|E
s(x)‖)t≥0 and (log ‖dxφt|E

u(x)‖)t≥0

are additive families of continuous functions with respect to Φ.

2.4.2 Non-conformal flows with bounded distortion

Let Λ be an hyperbolic set for a C1 flow Φ = (φt)t∈R. Moreover, let Es(x) and Eu(x)
be the stable and unstable spaces at x. We say that Φ has bounded distortion (in the
sense of [PS01]) if there exist constants C1 > 0, C2 > 0 and Hölder continuous functions
bs, bu : Λ → R such that

C1‖v‖ exp

∫ t

0
(bs ◦ φτ )(x) dτ ≤ ‖dxφtv‖ ≤ C2‖v‖ exp

∫ t

0
(bs ◦ φτ )(x) dτ

for v ∈ Es(x), and

C1‖v‖ exp

∫ t

0
(bu ◦ φτ )(x) dτ ≤ ‖dxφtv‖ ≤ C2‖v‖ exp

∫ t

0
(bu ◦ φτ )(x) dτ

for v ∈ Eu(x). In this case one can easily verify that the families as = (ast )t≥0 and
au = (aut )t≥0 given by

ast (x) = log ‖dxφt|Es(x)‖ and aut (x) = log ‖dxφt|Eu(x)‖

are almost additive with respect to Φ and satisfy

lim
t→∞

1

t

∥∥∥∥a
s
t −

∫ t

0
(bs ◦ φτ ) dτ

∥∥∥∥
∞

= 0

and

lim
t→∞

1

t

∥∥∥∥a
u
t −

∫ t

0
(bu ◦ φτ ) dτ

∥∥∥∥
∞

= 0.
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2.4.3 Quasiconformal flows

Now let Λ be an hyperbolic set for a C1 flow Φ = (φt)t∈R, and consider the functions
Ks,Ku : Λ× R → R given by

Ks(x, t) =
max{‖dxφtv‖ : v ∈ Es(x), ‖v‖ = 1}

min{‖dxφtv‖ : v ∈ Es(x), ‖v‖ = 1}
(19)

and

Ku(x, t) =
max{‖dxφtv‖ : v ∈ Eu(x), ‖v‖ = 1}

min{‖dxφtv‖ : v ∈ Eu(x), ‖v‖ = 1}
. (20)

We say that Φ is uniformly quasiconformal if the functions Ks and Ku are uniformly
bounded for all x ∈ Λ and t ∈ R. Observe that when Φ is conformal on Λ, it follows directly
from (17) and (18) that Ks(x, t) = 1 and Ku(x, t) = 1 for all x ∈ Λ and all t ∈ R. The
notion of a uniformly quasiconformal hyperbolic map is analogous (see [Sad05]). Observe
that conformal flows are quasiconformal and an Anosov diffeomorphism is quasiconformal
if and only if its suspension flow is quasiconformal (see for example [Fan05]). It follows
from (19) and (20) that

lim
t→∞

1

t
‖Ks(x, t)‖∞ = 0 and lim

t→∞

1

t
‖Ku(x, t)‖∞ = 0,

which readily implies that (Ks(x, t))t≥0 and (Ku(x, t))t≥0 are asymptotically additive fam-
ilies with respect to Φ.

2.4.4 Average conformal flows

Inspired by previous work [BCH10], it was introduced in [WWCZ20] a type of non-
conformal hyperbolic maps, which can also be seen as a generalization of quasiconformal
maps. Let Λ be an hyperbolic set for a diffeomorphism f : Λ → Λ. The set Λ is called an
average conformal hyperbolic set for f if it admits exactly two unique Lyapunov exponents,
one strictly positive and the other strictly negative.

If Φ = (φt)t∈R is a suspension flow over an average conformal hyperbolic map, it follows
from Lemma 2.3 in [WWCZ20] that

lim
t→∞

1

t
‖ log ‖dxφt|Es(x)‖ − log ‖(dxφt|Es(x))

−1‖−1‖∞ = 0,

lim
t→∞

1

t
‖ log ‖dxφt|Eu(x)‖ − log ‖(dxφt|Eu(x))

−1‖−1‖∞ = 0 and

‖(dxφt|Es(x))
−1‖−1 ≤ |det(dxφt|Es(x))|

1

ds ≤ ‖dxφt|Es(x)‖,

‖(dxφt|Eu(x))
−1‖−1 ≤ |det(dxφt|Eu(x))|

1

du ≤ ‖dxφt|Eu(x)‖,

where ds := dimEs and du := dimEu. Since (det(dxφt|Eu(x))t≥0 and (det(dxφt|Es(x))t≥0

are additive families with respect to Φ, one can see that ai := (‖ log ‖dxφt|Ei(x)‖)t≥0 and
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bi := (‖ log ‖dxφt|Ei(x)‖− log ‖(dxφt|Ei(x))
−1‖−1)t≥0 are asymptotically additive families of

continuous functions with respect to Φ for i ∈ {u, s}.

2.5 The general physical equivalence problem

We recall that a family of functions a = (at)t≥0 is said to have bounded variation if for
every κ > 0 there exists ε > 0 such that

|at(x)− at(y)| < κ whenever y ∈ Bt(x, ε).

Inspired by the examples in subsection 2.4 and by the work [Cun20], one can ask the
following questions:

Question A: Given an asymptotically additive family of continuous functions a =
(at)t≥0 with respect to a continuous flow Φ = (φt)t∈R on a compact metric space X, is
there any continuous function b : X → R such that

lim
t→∞

1

t

∥∥∥∥at −
∫ t

0
(b ◦ φs)ds

∥∥∥∥
∞

= 0 ? (21)

Question B: When Φ|Λ is a hyperbolic flow and the family a is almost additive with
bounded variation, is there any continuous function b : Λ → R where the additive family

Stb :=

∫ t

0
(b ◦ φs)ds

has bounded variation and also satisfy (21)?
As we showed, Theorem 1 answers the Question A in the case of suspension flows and,

in particular, in the case of hyperbolic flows. Moreover, Theorem 5 gives a setup where we
also can positively answer the Question A in the case of expansive flows.

We notice that the Question B is open even in the case of discrete time dynamical
systems (see [Cun20]). In general, positive answers to these questions are very useful for
some extensions of the thermodynamic formalism and multifractal analysis for flows (see
section 3).

Let us now give some directions on how to approach this problem in general. Let
Φ = (φt)t∈R be a continuous flow and let a = (at)t≥0 be an asymptotically additive family
of continuous functions with respect to Φ. For any function c : X → R, we have

∫ n

0
(c ◦ φs)ds =

n−1∑

k=0

(c̃ ◦ φk1) for every n ≥ 1 (22)

where c̃ :=
∫ 1
0 (c ◦ φs)ds, and one can check that (an)n≥1 is an asymptotically additive

sequence with respect to the map φ1. Then, by Theorem 1.2 in [Cun20], there exists a
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continuous function b̃ : X → R such that

lim
n→∞

1

n

∥∥∥∥an −
n−1∑

k=0

b̃ ◦ φk1

∥∥∥∥
∞

= 0.

If there exists a continuous function b : X → R such that b̃ =
∫ 1
0 (b ◦ φs)ds, from (22)

we readily obtain that

lim
n→∞

1

t

∥∥∥∥at −
∫ t

0
(b ◦ φs)ds

∥∥∥∥
∞

= 0.

Just for illustration, here it goes a simple example:

Example 2. Let Φ = (φt)t∈R be the flow φt(x) = etx on R
+ := (0,∞]. If b(x) = 1/2+log x,

then for a(x) = log x, we have

∫ 1

0
(a ◦ φs)(x)ds = b(x) for every x ∈ R

+.

A less (but still) simple example:

Example 3. Let Φ = (φt)t∈R be the flow φt(x) = etx defined on R. If b : R → R is given
by

b(x) = p(x)

(
ed − 1

d

)
,

where p : R → R is an homogeneous polynomial of degree d, then

∫ 1

0
(p ◦ φs)(x)ds = b(x) for every x ∈ R.

Following this approach, we can ask:
Question C. Given a continuous flow Φ and a continuous function b̃ : X → R, is there

any continuous function b : X → R satisfying

b̃(x) =

∫ 1

0
(b ◦ φs)(x)ds for every x ∈ X ?

Question D. If we cannot give a positive answer to the previous question in general,
what kind of functions and flows satisfy it?

In order to extend the theory of ergodic optimization for flows, the Question C was
also posted in [BHVZ21].

The following example indicates a negative answer to Question C in the case where
the function b̃ : X → R is bounded.
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Example 4. Let X be a compact metric space and Φ = (φt)t∈R a continuous flow on X.
Let x∗ ∈ X be a non-fixed point of Φ and consider b̃ := 1x∗ : X → R the characteristic
function of the set {x∗}. Suppose there exists a bounded function b : X → R such that

∫ 1

0
(b ◦ φs)(x)ds = b̃(x) for all x ∈ X. (23)

This implies that
∫ 1

0
(b ◦ φs)(x

∗)ds = b̃(x∗) = 1 and

∫ 1

0
(b ◦ φs)(x)ds = b̃(x) = 0 for every x 6= x∗.

Given δ > 0, consider the point z := φδ(x
∗). Since x∗ is not a fixed point, z 6= x∗ and

we have

0 =

∫ 1

0
(b ◦ φs)(z)ds =

∫ δ+1

δ

(b ◦ φs)(x
∗)ds

Then
∫ 1

0
(b ◦ φs)(x

∗)ds =

∫ δ

0
(b ◦ φs)(x

∗)ds +

∫ δ+1

δ

(b ◦ φs)(x
∗)ds+

∫ 1

δ+1
(b ◦ φs)(x

∗)ds

=

∫ δ

0
(b ◦ φs)(x

∗)ds +

∫ 1

δ+1
(b ◦ φs)(x

∗)ds,

which readily implies that
∣∣∣∣
∫ 1

0
(b ◦ φs)(x

∗)ds

∣∣∣∣ ≤ 2δ‖b‖∞.

Since δ is arbitrary and the function b is bounded, taking δ < 1/(2‖b‖∞) we obtain

1 = |̃b(x∗)| =

∣∣∣∣
∫ 1

0
(b ◦ φs)(x

∗)ds

∣∣∣∣ < 1,

which is a contradiction. In particular, since X is compact, there is no continuous function
b : X → R satisfying (23).

Proposition 7. Let Φ be a continuous flow on a metric space X. Suppose that for a given
continuous function b̃ : X → R there exists a continuous function b : X → R such that

b̃(x) =

∫ 1

0
(b ◦ φs)(x)ds for every x ∈ X.

Then, we have

lim
t→0

b̃(φt(x))− b̃(x)

t
= b(φ1(x))− b(x) for every x ∈ X. (24)

Moreover, ∫

X

(
lim
t→0

b̃(φt(x))− b̃(x)

t

)
dµ(x) = 0 for every µ ∈ M(φ1).
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Proof. Notice that

b̃ ◦ φt − b̃

t
=

1

t

(∫ t+1

t

(b ◦ φs)ds −

∫ 1

0
(b ◦ φs)ds

)
for all t > 0. (25)

One can check that the function

t 7→ I(t) :=

∫ t+1

t

(b ◦ φs)ds −

∫ 1

0
(b ◦ φs)ds

is uniformly continuous on [0,∞), differentiable on (0,∞) and satisfies limt→0 I(t) = 0.
Hence, by the L’Hôspital’s rule, we obtain that

lim
t→0

I(t)

t
= lim

t→0
(b ◦ φt+1 − b ◦ φt) = b ◦ φ1 − b.

This together with (25) proves the result.

Remark. One can check directly that the functions in Example 2 and Example 3 satisfy
the condition (24).

Observe that if there exists a constant β ∈ R such that

lim
t→0

b̃(φt(x))− b̃(x)

t
= β for every x ∈ X,

then Proposition 7 says that β = 0. This fact is an inspiration for our negative answer to
Question C:

Example 5. (Counter-example). Let Φ = (φt)t∈R be the linear flow on T
2 given by

φt(x, y) = (x + tα1 mod 1, y + tα2 mod 1), with 0 < α1 + α2 < 1. Let b̃ : T2 → R be the
continuous function given by b̃(x, y) = (x+ y) mod 1. One can check that

lim
t→0

b̃(φt(x, y)) − b̃(x, y)

t
= lim

t→0

(x+ y + t(α1 + α2)) mod 1− (x+ y) mod 1

t

= lim
t→0

t(α1 + α2) mod 1

t
= lim

t→0

t(α1 + α2)

t
= α1 + α2

for every x ∈ T
2. If there exists a continuous function b : T2 → R such that b̃ =

∫ 1
0 (b◦φs)ds,

then Proposition 7 immediately gives that α1+α2 = 0, which is a contradiction. Therefore,
there is no continuous function b : T2 → R such that

(x+ y) mod 1 =

∫ 1

0
b(φs(x, y))ds.
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Remark. Example 5 is a negative answer to the general embedding problem presented in
[BHVZ21]. This counter-example can be naturally extended to the n-torus T

n. Observe
that even though we cannot guarantee in general a positive answer for Question C in the
case of linear flows on T

n, in Example 1 we were able to guarantee the physical equivalence
between additive and asymptotically additive families of continuous potentials.

Notice that the converse of Proposition 7 is false. In fact, still considering Example 5,
if we take b(x, y) = (x+ y) mod 1, then b(φ1(x, y)) − b(x, y) = (α1 + α2) mod 1 = α1 + α2

for every x ∈ T
2. But

∫ 1

0
b(φs(x, y))ds =

[
(x+ y) mod 1 +

α1 + α2

2

]
mod 1 6= b̃(x, y).

We will now define the notion of cohomology for flows and maps.

Definition 2. Let X be a metric space, Ψ a flow on X and T : X → X a map. We say
that a function g : X → R is Ψ-cohomologous to a function h : X → R if there exists a
bounded measurable function q : X → R such that

g(x) − h(x) = lim
t→0

q(ψt(x)) − q(x)

t
for every x ∈ X.

Moreover, we say that g is T -cohomologous to h if there exists a bounded measurable
function r : X → R such that

g(x) − h(x) = r(T (x))− r(x) for every x ∈ X.

We also say that a function is a Ψ-coboundary (T -coboundary) when it is Ψ-cohomologous
to the zero function (T -cohomologous to the zero function). The functions q, r : X → R

are usually called transfer functions.

The following result gives some directions for Question D:

Proposition 8. Let Φ = (φt)t∈R be a C1 flow on a Riemmanian manifold X and b̃ : X → R

a C1 φ1-coboundary function admitting a C1 transfer function. Then, there exists a con-
tinuous function b : X → R such that

∫ 1

0
(b ◦ φs)ds = b̃.

Moreover, the function b is a Φ-coboundary also admitting a C1 transfer function.

Proof. Suppose that

b̃ = g ◦ φ1 − g for some C1 function g : X → R.
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Defining a function b : X → R as

b(x) = dxg(x)

(
d

ds
φs(x)|s=0

)
= lim

s→0

g(φs(x)) − g(x)

s
,

we can check that b is continuous and
∫ t

0
(b ◦ φs)ds = g ◦ φt − g for every t ≥ 0.

In particular, we have ∫ 1

0
(b ◦ φs)ds = g ◦ φ1 − g = b̃.

Notice that b̃ is a φ1-coboundary and b is a Φ-coboundary, both admitting the same
C1 transfer function g.

Remark. In Proposition 8, if X is a compact manifold, φ1 is a C
∞ diffeomorphism and b̃ is

C∞ then one can always guarantee the existence of a C∞ function g such that b̃ = g◦φ1−g
(see [LMM86]).

A map T is said to be uniquely ergodic if it admits a unique T -invariant measure. In
the same manner, we say that a flow Ψ is uniquely ergodic when there exists a unique
Ψ-invariant measure.

Proposition 9. Let Φ = (φt)t∈R be a continuous flow on a compact metric space M and
such that φ1 :M →M is uniquely ergodic. Then

1. (at)t≥0 is an asymptotically additive family with respect to Φ if and only if (an)n≥1

is an asymptotically additive sequence with respect to φ1;

2. for each asymptotically additive family of continuous functions a = (at)t≥0 there
exists a continuos function c :M → R such that

lim
t→+∞

1

t

∥∥∥∥at −
∫ t

0
(c ◦ φs)ds

∥∥∥∥
∞

= 0.

Proof. Consider the linear operator L : C(X) → C(X) given by

L(a)(x) =

∫ 1

0
(a ◦ φs)(x)ds.

Then, one can see that ‖L‖ ≤ 1, where we are considering the norm

‖L‖ := sup
f∈C(X),‖f‖∞ 6=0

‖Lf‖∞
‖f‖∞

.
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Since L is a bounded linear operator, its spectrum σ(L) is compact and is such that

σ(L) ⊂ [−‖L‖, ‖L‖] ⊂ [−1, 1].

In particular, this implies that there exists λ > 1 such that the linear operator L − λI :
C(X) → C(X) is a bijection. This readily implies that given a continuous function b :
X → R there exists a unique continuous function a : X → R such that

∫ 1

0
(a ◦ φs)ds − λa = b. (26)

Now let ν be the unique φ1-invariant measure and consider the function

c := a− λ

∫

M

adν.

It follows from (26) that

∥∥∥∥an −

∫ n

0
(c ◦ φs)ds

∥∥∥∥
∞

≤

∥∥∥∥an −
n−1∑

k=0

b ◦ φk1

∥∥∥∥
∞

+

∥∥∥∥nλ
(∫

M

adν −
n−1∑

k=0

a ◦ φk1

)∥∥∥∥
∞

. (27)

Since φ1 is uniquely ergodic, we have in particular that

lim
n→∞

∥∥∥∥λ
(∫

M

adν −
1

n

n−1∑

k=0

a ◦ φk1

)∥∥∥∥
∞

= 0

for every a ∈ C(X).
Let us start proving item 1. By the arbitrariness of b ∈ C(X), if (an)n≥1 is asymptot-

ically additive with respect to φ1 then it follows directly from (27) that (at)t≥0 is asymp-
totically additive with respect to Φ. The converse is immediate.

In order to prove item 2, notice that Theorem 1.2 in [Cun20] guarantees the existence
of a function b ∈ C(X) such that

lim
n→∞

1

n

∥∥∥∥an −
n−1∑

k=0

b ◦ φk1

∥∥∥∥
∞

= 0.

Therefore, it readily follows from (27) that there exists a function c ∈ C(X) such that

lim
t→∞

1

t

∥∥∥∥at −
∫ t

0
(c ◦ φs)ds

∥∥∥∥
∞

= 0,

as desired.

Remark. Notice that if the time-one map φ1 of a flow Φ is uniquely ergodic then the flow
Φ itself is uniquely ergodic. From this, we can see that the setup of Proposition 9 is quite
restrictive. We still don’t know if the result remains true in full generality, without the
unique ergodicity hypotheses.
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3 Applications and consequences of Theorem 1

In this section, using Theorem 1, we are going to show how to extend some results of the
nonadditive thermodynamic formalism and multifractal analysis for flows.

3.1 Nonadditive thermodynamic formalism

Let M be a compact metric space and Λ ⊂ M be a locally maximal hyperbolic set for a
topologically mixing C1 flow Φ. Suppose that a = (at)t≥0 is an asymptotically additive
family of continiuous functions with tempered variation. Hence, Theorem 1 guarantees the
existence of a continuous function b : Λ → R such that

sup
µ∈M(Φ)

{
hµ(Φ) + lim

t→∞

1

t

∫

Λ
atdµ

}
= sup

µ∈M(Φ)

{
hµ(Φ) +

∫

Λ
bdµ

}
.

Moreover, by the definition of the nonadditive topological pressure introduced in [BH20],
P (a) = P

(
(Stb)t≥0

)
. Therefore, the classical variational principle for continuous flows

implies that

P (a) = sup
µ∈M(Φ)

{
hµ(Φ) + lim

t→∞

1

t

∫

Λ
atdµ

}
.

This is a variational principle for asymptotically additive families of continuous functions
with respect to a hyperbolic flow. Notice that by Theorem 5 the variational principle is
also valid for expansive continiuous flows admitting an invariant measure of full support.

In the case of locally maximal hyperbolic sets for flows or suspension flows in general,
and expansive flows with measures of full support, this result extends Theorem 9 in [BH20]
and Theorem 1.1 in [BH21a].

Based on this variational principle, we can also define the notion of equilibrium measures
for asymptotically additive families of potentials. We say that ν ∈ M(Φ) is an equilibrium
measure for a with respect to Φ if

P (a) = hν(Φ) + lim
t→+∞

1

t

∫

Λ
atdν.

Corollary 10. Let Λ ⊂M be a locally maximal hyperbolic set for a C1 flow Φ or suppose
Φ is an expansive continuous flow admitting an invariant measure of full support. If a is
an asymptotically additive family of functions with respect to Φ, then

1. the set of equilibrium measures for a is a non-empty compact and convex set;

2. each extreme point of the set of equilibrium measures is an ergodic measure.

Proof. By Theorem 1 and Theorem 5, respectively for hyperbolic flows and expansive flows,
the space of equilibrium measures for a is the same as the space of equilibrium measures
for some continuous function.
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Theorem 3.5 in [BH21a] guarantees that for locally maximal hyperbolic sets for C1

flows, every almost additive family with bounded variation admits a unique equilibrium
measure. Since we don’t know if Question B is true, we are not able to obtain this
uniqueness result directly from the additive case (see [Fra77]).

3.2 Multifractal analysis: beyond families with unique equilibrium mea-

sures

Theorem 9 in [BH21a] establishes a conditional variational principle for almost additive
families of potentials with uniqueness of equilibrium measures. In this section, using the
work of Climenhaga in [Cli13], Cuneo in [Cun20], we are going to show how to obtain
a conditional variational principle including more classes of almost additive families of
functions, without using the uniqueness of equilibrium assumption. Moreover, as a direct
consequence of Theorem 1, we also can extend the conditional variational principle to
include asymptotically additive families of continuous potentials.

Let M be a compact metric space and Λ ⊂ M be a locally maximal hyperbolic set for
a C1 topologically mixing flow Φ = (φt)t∈R. Given two asymptotically additive families of
continuous functions a = (at)t≥0 and b = (bt)t≥0, we consider the level sets

KΦ
α (a, b) :=

{
x ∈ Λ : lim

t→+∞

at(x)

bt(x)
= α

}
, α ∈ R.

In this section, we consider Merg(Φ) as the set of ergodic Φ-invariant measures. We
also use this same notation for maps.

Let A(M) be the set of all almost additive families of continuous functions and, re-
spectively, AA(M) the set of asymptotically additive families of continuous functions
a = (at)t≥0 on M with tempered variation such that

sup
t∈[0,s]

‖at‖∞ <∞ for some s > 0,

and E(M) ⊂ A(M) the subset of families having a unique equilibrium measure (the ex-
istence of almost additive families with unique equilibrium measures is guaranteed by
Theorem 3.5 in [BH21a]).

Now let us define the notion of u-dimension for flows which was originally introduced
in [BS00]. Let Φ = (φt)t∈R be a continuous flow on a compact metric space X. Given
a positive continuous function u : X → R, we consider the additive family of continuous
functions (ut)t≥0 defined by

ut(x) =

∫ t

0
(u ◦ φs)(x)ds

for every x ∈ X and t > 0. For each Z ⊂ X and α ∈ R, let

N(Z, u, α, ε) = lim
T→∞

inf
Γ

∑

(x,t)∈Γ

e−αu(x,t,ε),
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with the infimum taken over all countable sets Γ ⊂ X × [T,+∞) covering Z. Finally, we
define

dimu,ε Z = inf
{
α ∈ R : N(Z, u, α, ε) = 0

}
.

The limit
dimu Z := lim

ε→0
dimu,ε Z

exists and is called the u-dimension of the set Z with respect to the flow Φ. When u ≡ 1
the number dimu Z coincides with the topological entropy h(Φ|Z) of Φ on the set Z.

Theorem 11. Let Λ ⊂M be a locally maximal hyperbolic set for a C1 topologically mixing
flow Φ = (φt)t∈R such that h(Φ) < ∞. Let a = (at)t≥0 and b = (bt)t≥0 be asymptotically
additive families of continuous functions in AA(Λ) and such that

lim
t→∞

1

t

∫

Λ
btdµ ≥ 0 for all µ ∈ M(Φ)

with equality only permitted when

lim
t→∞

1

t

∫

Λ
atdµ 6= 0.

If α /∈ P(M(Φ)), then KΦ
α (a, b) = ∅. Moreover, if α ∈ intP(M(Φ)) then KΦ

α (a, b) 6= ∅, and
the following properties hold:

1. the level sets KΦ
α (a, b) satisfy the conditional variational principle

dimuK
Φ
α (a, b) = sup

{
hµ(Φ)∫
Λ udµ

: µ ∈ Merg(Φ) and P(µ) = α

}
;

2. dimuK
Φ
α (a, b) = inf{Tu(q) : q ∈ R}, where Tu(q) is defined by Tu(q) = inf{t ∈ R :

P (q(a− αb)− tu) ≤ 0};

3. for each ε > 0 there exists an ergodic measure µα supported on KΦ
α (a, b) such that

∣∣∣∣ dimu µα =
hµα(Φ)∫
Λ udµα

− dimuK
Φ
α (a, b)

∣∣∣∣ < ε

4. the spectrum α 7→ dimuK
Φ
α (a, b) is continuous on intP(M(Φ)).

Notice that here we no longer require that span{a, b, u} ⊂ E(X) as in [BH21b]. More-
over, this result extends Theorem 9 in [BH21b] to asymptotically additive families.

The proof will be divided in several steps.
First, let us recall some definitions and introduce some nomenclature used in this sec-

tion. Let X be a compact metric space, T : X → X a continuous map. We write
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M(T ) to denote the space of T -invariant measures, Merg(T ) the space of T -invariant er-
godic measures, and C(X) the space of continuous real valued functions defined on X.
Let ϕ,ψ ∈ C(X), where

∫
X
ψdµ ≥ 0 for all µ ∈ M(T ) with equality only permitted if∫

X
ϕdµ 6= 0. We consider the map P : M(T ) → R given by

PT (µ) :=

∫
X
ϕdµ∫

X
ψdµ

.

We also define the level sets for ϕ,ψ by

KT
α (ϕ,ψ) :=

{
x ∈ X : lim

n→∞

Snϕ(x)

Snψ(x)
= α

}
,

where Snh =
∑n−1

k=0 h ◦ T k for every function h : X → R.

Theorem 12 ([Cli13, Theorem 3.3]). Let X be a compact metric space and T : X → X be
a continuous map such that the map µ 7→ hµ(T ) is upper semicontinuous and h(T ) < ∞.
Suppose that there is a dense subspace D ⊂ C(X) such that every ϕ ∈ D has a unique
equilibrium measure. Let ϕ,ψ ∈ C(X) be such that

∫
X
ψdµ ≥ 0 for all µ ∈ M(T ) with

equality only permitted if
∫
X
ϕdµ 6= 0. Then KT

α (ϕ,ψ) = ∅ for every α /∈ PT (M(T )), while
for every α ∈ intPT (M(T )) we have that

1. the level sets KT
α (ϕ,ψ) satisfy the conditional variational principle

dimuK
T
α (ϕ,ψ) = sup

{
hµ(T )∫
X
udµ

: µ ∈ M(T ) and PT (µ) = α

}
;

2. dimuK
T
α (ϕ,ψ) = inf{Tu(q) : q ∈ R}, where Tu(q) is defined by Tu(q) = inf{t ∈ R :

Pclassic(q(ϕ− αψ)− tu) ≤ 0};

3. For each ε > 0 there exists an ergodic measure µ supported on KT
α (ϕ,ψ)) such that

∣∣∣∣
hµ(T )∫
X
udµ

− dimuK
T
α (ϕ,ψ)

∣∣∣∣ < ε.

Moreover, by Proposition 2.14 in [Cli13], one can see that the map

α→ dimuK
T
α (ϕ,ψ)

is continuous on intPT (M(T )).
We recall that a sequence of functions F = (fn)n≥1 is asymptotically additive (with

respect to T ) if for each ε > 0 there exists a function f such that

lim sup
n→∞

1

n
‖fn − Snf‖∞ < ε.
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We also recall that a sequence F = (fn)n≥1 is almost additive (with respect to T ) if
there exists C > 0 such that

−C + fm(x) + fn(T
m(x)) ≤ fm+n(x) ≤ fm(x) + fn(T

m(x)) +C

for every x ∈ X and all m,n ≥ 1.
Let F = (fn)n≥0 and G = (gn)n≥0 be two almost additive sequences of continuous

functions where limn→∞
1
n

∫
X
gndµ ≥ 0 for all µ ∈ M(T ) with equality only permitted if

limn→∞
1
n

∫
X
fndµ 6= 0.

Consider level sets

KT
α (F,G) :=

{
x ∈ X : lim

n→∞

fn(x)

gn(x)
= α

}
,

and also the map QT : M(T ) → R defined by

QT (µ) = lim
n→∞

∫
X
fndµ∫

X
gndµ

.

Corollary 13. Let X be a compact metric space and T : X → X a map satisfying the
conditions in Theorem 12. Then KT

α (F,G) = ∅ for every α /∈ QT (M(T )), while for every
α ∈ intQT (M(T )) we have that

1. the level sets KT
α (F,G) satisfy the conditional variational principle

dimuK
T
α (F,G) = sup

{
hµ(T )∫
X
udµ

: µ ∈ M(T ) and QT (µ) = α

}
;

2. dimuK
T
α (F,G) = inf{Tu(q) : q ∈ R}, where Tu(q) is defined by Tu(q) = inf{t ∈ R :

P (q(F − αG)− tu) ≤ 0};

3. For each ε > 0 there exists an ergodic measure µ supported on KT
α (F,G) such that

∣∣∣∣
hµ(T )∫
X
udµ

− dimuK
T
α (F,G)

∣∣∣∣ < ε.

4. the function α→ dimuK
T
α (F,G) is continuous on intQT (M(T )).

Proof. By Theorem 1.2 in [Cun20] there exist f, g ∈ C(X) such that

lim
n→∞

1

n
‖fn − Snf‖∞ = 0 and lim

n→∞

1

n
‖gn − Sng‖∞ = 0.

By the variational principle for almost additive sequence of continuous functions, one can
see that

P (q(F − αG)− su) = Pclassic(q(f − αg) − su)

for every q, α and s ∈ R. Moreover, PT (µ) = QT (µ) for all µ ∈ M(T ), and KT
α (F,G) =

KT
α (f, g) for each α ∈ R. Hence, the result now follows directly from Theorem 12.
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We say that a continuous map T : X → X on a compact metric space X (or a
continuous flow Φ on X) has entropy density of ergodic measures if for every invariant
measure µ there exist ergodic measures νn for n ∈ N such that νn → µ in the weak∗

topology and hνn(T ) → hµ(T ) (or hνn(Φ) → hµ(Φ)) when n→ ∞.
In order to give some examples having entropy density of ergodic measures, we will first

recall a few notions. Given δ > 0, we say that T has weak specification at scale δ if there
exists γ ∈ N such that for every (x1, n1), . . . , (xk, nk) ∈ X × N there are y ∈ X and times
γ1, . . . , γk−1 ∈ N such that γi ≤ γ and

dni
(T si−1+γi−1(y), xi) < δ for i = 1, . . . , k,

where si =
∑i

i=1 ni +
∑i−1

i=1 γi with n0 = γ0 = 0. When one can take γi = γ for i =
1, . . . , k − 1, we say that T has specification at scale δ. Finally, we say that T has weak
specification if it has weak specification at every scale δ and, analogously, we say that T has
specification if it has specification at every scale δ.

It was shown in [EKW94] and [PS05] that mixing subshifts of finite type and mixing
locally maximal hyperbolic sets have entropy density of ergodic measures. More recently,
it was shown in [CLT20] that a continuous map T : X → X on a compact metric space
with the weak specification property such that the entropy map µ 7→ hµ(T ) is upper
semicontinuous, has entropy density of ergodic measures. Some examples include expansive
maps with specification or with weak specification, topologically transitive locally maximal
hyperbolic sets for diffeomorphisms, and transitive topological Markov chains.

We can also introduce the same notions for flows. Let Φ = (φt)t∈R be a continuous flow
on a compact metric space X. We say that Φ has weak specification at scale δ > 0 if there
exists γ > 0 such that for every finite collection of orbit segments {(xi, ti)}

k
i=1, there exists

a point y ∈ X and a sequence of transition times γ1, ..., γk−1 ∈ [0, γ] such that

dtj (φsj−1+γj−1
(y), xj) < δ for j = 1, ..., k,

where sj =
∑j

i=1 ti +
∑j−1

i=1 γi and s0 = γ0 = 0. We say that Φ has weak specification
if it has weak specification at every scale δ. When, for every scale δ > 0, we can take
the approximating orbit y ∈ X to be periodic, and the transition times γi close to γ, we
say that Φ has specification. For a proper definition, see for example [Bow72]. It was
also proved in [CLT20] that every expansive flow with the weak specification property has
entropy density of ergodic measures. In particular, locally maximal hyperbolic sets for C1

topologically mixing flows are expansive and have the specification property, that is, they
have entropy density of ergodic measures.

Proof of Theorem 11. We are going to use the Markov partitions introduced in subsec-
tion 2.2. Let us start proving the result for almost additive families a and b.

Let’s consider the following level sets

KΦ
α (a, b) :=

{
x ∈ Λ : lim

t→∞

at(x)

bt(x)
= α

}
, KTZ

α (c, d) :=

{
x ∈ Z : lim

n→∞

cn(x)

dn(x)
= α

}
,
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where c = (cn)n∈N and d = (dn)n∈N are almost additive sequences of continuous functions
given by cn(x) = aτn(x)(x) and dn(x) = bτn(x)(x) (see Lemma 3.1 in [BH21a]). By Lemma
3.4 in [BH21a], for every Φ-invariant measure µ induced by an ergodic TZ-invariant measure
ν, we have that

P(µ) := lim
t→+∞

∫
X
atdµ∫

X
btdµ

= lim
n→+∞

∫
X
cndν∫

X
bndν

:= QTZ
(ν). (28)

We also recall that a TZ -invariant measure ν is ergodic if and only if the induced
Φ-invariant measure µ is ergodic (see identity (11)).

It follows from Proposition 8, Lemma 14 and Lemma 15 in [BH21b] that

dimuK
Φ
α (a, b) = dimu{φs(x) ∈ Λ : x ∈ Kα(c, d) and s ∈ [0, τ(x)]}

= inf{β ∈ R : Nβ(Kα(c, d)) = 0} = dimIu K
TZ
α (c, d).

(29)

Now we are going to check the conditions to apply Corollary 13 for the map TZ and the
sequences c and d. In fact, since Φ is expansive, one can verify that TZ is also expansive,
which implies that ν 7→ hν(TZ) is upper semicontinuous. Moreover, by Abramov’s entropy
formula (identity (12)), we have

hν(TZ) ≤ hµ(Φ) sup τ ≤ h(Φ) sup τ <∞

for every ν ∈ M(TZ), and then h(TZ) < ∞. Letting D be the space of Hölder continuous
functions, one can see that D is dense in the space of continuous functions ϕ : Z → R,
and every Hölder continuous function has a unique equilibrium measure with respect to
the map TZ .

By hypothesis, limt→∞
1
t

∫
Λ btdµ ≥ 0 for all µ ∈ M(Φ) with equality only permitted

when limt→∞
1
t

∫
Λ atdµ 6= 0. It follows again from Lemma 3.4 in [BH21a] that

limn→∞
1
n

∫
Z
cndν∫

Z
τdν

= lim
t→∞

1

t

∫

Λ
atdµ and

limn→∞
1
n

∫
Z
dndν∫

Z
τdν

= lim
t→∞

1

t

∫

Λ
btdµ.

for every Φ-invariant ergodic measure µ induced by an ergodic TZ-invariant measure ν.
Since

∫
Z
τdν > 0 for all ν ∈ M(TZ), we obtain that limn→∞

1
n

∫
Z
dndν ≥ 0 for all ν ∈

Merg(TZ) and, in particular, that

lim
n→∞

1

n

∫

Z

dndν = 0 implies lim
n→∞

1

n

∫

Z

cndν 6= 0 for all ν ∈ Merg(TZ). (30)

Now observe that TZ : Z → Z is topologically mixing and is conjugated to a topological
Markov chain σ : ΣA → ΣA (see subsection 2.2). From this, one can see that TZ has
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entropy density of ergodic measures which, in particular, implies that Merg(TZ) is dense
in M(TZ). Let η ∈ M(TZ). By the density of Merg(TZ) in M(TZ), given ε > 0 there exists
ν ∈ Merg(TZ) such that

∫

Z

1

n
dndη >

∫

Z

1

n
dndν − ε for every n ≥ 1.

Then

lim
n→∞

1

n

∫

Z

dndη ≥ lim
n→∞

1

n

∫

Z

dndν − ε ≥ −ε.

Since the measure η and ε > 0 are arbitrary, we conclude that limn→∞
1
n

∫
Z
dndν ≥ 0 for

every ν ∈ M(TZ).
Now fix any measure η ∈ M(T ). Given ε > 0, the entropy density of ergodic measures

implies the existence of ν ∈ Merg(TZ) such that

∣∣∣∣ lim
n→∞

1

n

∫

Z

dndη − lim
n→∞

1

n

∫

Z

dndν

∣∣∣∣ ≤ ε and

∣∣∣∣ lim
n→∞

1

n

∫

Z

cndη − lim
n→∞

1

n

∫

Z

cndν

∣∣∣∣ ≤ ε.

(31)
Now suppose that

lim
n→∞

1

n

∫

Z

dndη = 0 and lim
n→∞

1

n

∫

Z

cndη = 0.

Then it follows from (31) that

∣∣∣∣ lim
n→∞

1

n

∫

Z

dndν

∣∣∣∣ ≤ ε and

∣∣∣∣ lim
n→∞

1

n

∫

Z

cndν

∣∣∣∣ ≤ ε.

By the arbitrariness of ε, this contradicts (30). Hence, since η ∈ M(TZ) is also arbitrary,
we conclude in particular that

lim
n→∞

1

n

∫

Z

dndη = 0 implies lim
n→∞

1

n

∫

Z

cndη 6= 0 for all η ∈ M(TZ),

as desired. Now we finally are in the conditions of applying Corollary 13.
Let µ ∈ M(TZ) with QTZ

(µ) = α. By applying item (1) of Corollary 13 to the map
TZ : Z → Z and the sequences c and d, we have

dimIu K
TZ
α (c, d) ≥

hµ(TZ)∫
Z
Iudµ

.

Given any ε > 0, by item (3) of Corollary 13, there exists ν ∈ Merg(TZ) with QTZ
(ν) = α

such that
hν(TZ)∫
Z
Iudν

> dimIu K
TZ
α (c, d) − ε ≥

hµ(TZ)∫
Z
Iudµ

− ε.
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Since the measure µ and ε > 0 are arbitrary, we obtain that

sup

{
hν(TZ)∫
X
Iudν

: ν ∈ Merg(TZ) and QTZ
(ν) = α

}
≥ dimIu K

TZ
α (c, d).

Then, from the fact that Merg(TZ) ⊂ M(TZ), we conclude that

dimIu K
TZ
α (c, d) = sup

{
hν(TZ)∫
X
Iudν

: ν ∈ Merg(TZ) and QTZ
(ν) = α

}
. (32)

Now it follows from (11), (12) and (28) that for each ν ∈ Merg(TZ) with QTZ
(ν) = α,

the induced measure η ∈ Merg(Φ) is such that P(η) = α, and

hη(Φ)∫
Λ udη

=

(
hν(TZ)∫
Z
τdν

)(
1∫

Λ udη

)
=

(
hν(TZ)∫
Z
τdν

)( ∫
Z
τdν∫

Z
Iudν

)
=
hν(TZ)∫
Z
Iudν

. (33)

Hence, it follows from (29) and (32) that

dimuK
Φ
α (a, b) = sup

{
hµ(Φ)∫
Λ udµ

: µ ∈ Merg(Φ) and P(µ) = α

}
,

and this proves the item (1) of Theorem 11.
Now let us prove the item (2). For each µ ∈ Merg(Φ) induced by ν ∈ Merg(TZ), we

have

hµ(Φ) + lim
t→∞

1

t

∫

Λ
q(at − αbt)dµ− s

∫

Λ
udµ

=
hν(TZ)∫
Z
τdν

+
limn→∞

∫
Z
q(cn − αdn)dν∫
Z
τdν

−
s
∫
Z
Iudν∫

Z
τdν

for every α, q, s ∈ R. Since 0 < inf τ := infx∈Λ τ(x) ≤ infx∈Z τ(x), we have

hµ(Φ) + lim
t→∞

1

t

∫

Λ
q(at − αbt)dµ− s

∫

Λ
udµ

≤ hν(TZ) + lim
n→∞

∫

Z

[q(cn − αdn)− sIu]dν

(
1

inf τ

)

≤ P (q(c− αd)− sIu)

(
1

inf τ

)
,

which implies that

P (q(a− αb)− su) ≤ P (q(c− αd)− sIu)

(
1

inf τ

)
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for every α, q, s ∈ R. Hence, Tu(q) ≤ TIu(q) for every q ∈ R.
Since sup τ := supx∈Λ τ(x) <∞, we can follow in an analogous way to obtain that

P (q(a− αb)− su) ≥ P (q(c − αd) − sIu)

(
1

sup τ

)

for every α, q, s ∈ R. Then, Tu(q) ≥ TIu(q) for every q ∈ R. Since it follows from (29) that
dimuK

Φ
α (a, b) = dimIu K

TZ
α (c, d), the item (2) of Corollary 13 gives that

dimuK
Φ
α (a, b) = dimIu K

TZ
α (c, d) = inf{TIu(q) : q ∈ R} = inf{Tu(q) : q ∈ R}

for each α ∈ intP(M(Φ)), as desired.
In order to prove item (3), we just observe again that

dimuK
Φ
α (a, b) = dimIu K

TZ
α (c, d)

and that we can use (33) together with item (3) of Corollary 13.
Now let us show how to obtain the item (4) using entropy density of ergodic measures.

Since Λ is a locally maximal hyperbolic set for the C1 topologically mixing flow Φ, we have
that Φ|Λ has entropy density of ergodic measures. In particular, the set Merg(Φ) is dense
in M(Φ). Additionally, recall that TZ also has entropy density of ergodic measures.

By (28) we already know that P(Merg(Φ)) = QTZ
(Merg(TZ)). Since Merg(Φ) = M(Φ),

Merg(TZ) = M(TZ), and the maps µ 7→ P(µ), ν 7→ QTZ
(ν) are continuous, we have that

QTZ
(M(TZ)) = QTZ

(Merg(TZ)) = QTZ
(Merg(TZ))

= P(Merg(Φ)) = P(Merg(Φ)) = P(M(Φ)).
(34)

It follows from item (4) of Corollary 13 that α 7→ dimIu K
TZ
α (c, d) is continuous on

intQTZ
(M(TZ)). Since dimuK

Φ
α (a, b) = dimIu K

TZ
α (c, d), by (34) we conclude that the

map α 7→ dimuK
Φ
α (a, b) is also continuous on intP(M(Φ)), and the Theorem 11 is proved

for almost additive families. Since, in particular, the result holds for the additive case,
now we can use directly Corollary 3 to complete the proof for asymptotically additive
families.

Remark. Notice that one could start proving Theorem 11 for the additive case (without
the hypothesis on density of ergodic measures) and after that, apply Theorem 1 to obtain
the full result for asymptotically and, consequently, almost additive families. The choice
to start proving the result already in the almost additive case is due to some connections
to the aforementioned results in the previous works [BH21a] and [BH21b].

As a final note, observe that since we cannot guarantee the uniqueness of equilibrium
measures for asymptotically additive families (even for hyperbolic flows), the extension of
Climenhaga’s results in [Cli13] to include continuous potentials is crucial for our extension
to asymptotically additive families.
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