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Abstract. We establish a conditional variational principle for the di-
mension spectrum obtained from almost additive families for a flow on a
conformal locally maximal hyperbolic set, simultaneously into the future
and into the past.

1. Introduction

Our main aim is to establish a variational principle for the Hausdorff di-
mension spectrum obtained from almost additive families for a flow. More
precisely, the spectrum is obtained computing the Hausdorff dimension of
the level sets obtained from the averages (when they exist) of almost additive
families into the past and into the future, on a conformal locally maximal
hyperbolic set. We note that the conditional variational principle for the
dimension spectrum cannot be obtained from separate results into the fu-
ture and into the past, at least without further modifications. Instead, we
construct noninvariant measures concentrated on each level with the ap-
propriate pointwise dimension that then allow us to obtain the conditional
variational principle.

We describe briefly the context of our work. The topological pressure P (φ)
of a continuous function φ with respect to a dynamical system f : X → X
was introduced by Ruelle in [14] for expansive maps and by Walters in [16]
in the general case. Its variational principle says that

P (φ) = sup
µ

(
hµ(f) +

∫
X
φdµ

)
,

where the supremum is taken over all f -invariant probability measures µ
on X and where hµ(f) is the Kolmogorov–Sinai entropy of f with respect
to µ. We refer the reader to the books [8, 10, 11, 15] for details and further
references. The nonadditive thermodynamic formalism was introduced es-
sentially replacing the topological pressure P (φ) of a single function φ by the
topological pressure P (Φ) of a sequence of continuous functions Φ = (φn)n∈N
(see [1]). Besides playing a unifying role, the nonadditive thermodynamic
formalism has nontrivial applications to the dimension theory and multi-
fractal analysis of dynamical systems. With the same spirit in mind, in [5]
we considered a version of the nonadditive topological pressure for almost
additive families with respect to a flow.
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A family a+ = (a+
t )t≥0 is said to be almost additive (into the future) with

respect to a flow Φ = (φt)t∈R if there exists a constant C > 0 such that

−C ≤ a+
t+s − a

+
t − a+

s ◦ φt ≤ C (1)

for every t, s > 0. We showed in [5] that if a+ is an almost additive family
of continuous functions with tempered variation (see Section 2.1) such that

sup
t∈[0,s]

‖a+
t ‖∞ <∞ for some s > 0,

then

PΦ(a+) = sup
µ∈MΦ

(
hµ(Φ) + lim

t→∞

1

t

∫
X
a+
t dµ

)
, (2)

where MΦ is the set of all Φ-invariant probability measures on X. We say
that a Φ-invariant measure µ on X is an equilibrium measure for a+ (with
respect to Φ) if the supremum in (2) is attained at µ, that is, if

PΦ(a+) = hµ(Φ) + lim
t→∞

1

t

∫
X
a+
t dµ.

We also showed that if Λ is a hyperbolic set for a topologically mixing
C1 flow Φ and the family a+ has bounded variation (see Section 4 for the
definition), then there exists a unique equilibrium measure for a+.

In this work we establish a conditional variational principle for the Haus-
dorff dimension spectrum obtained from almost additive families for a flow
on a conformal locally maximal hyperbolic set. Moreover, we consider si-
multaneously the behaviors into the future and into the past. For simplicity
of the exposition, here we formulate only a particular case.

Let a+ = (a+
t )t≥0 be a family of continuous functions on a hyperbolic

set Λ that is almost additive into the future (see (1)). Let also a− = (a−t )t≥0

be an almost additive sequence of continuous functions on Λ that is almost
additive into the past, that is, there exists a constant C > 0 such that

−C ≤ a−t+s − a
−
t − a−s ◦ φ−t ≤ C

for every t, s ≥ 0. Given α, β ∈ R, we consider the sets

K+
α =

{
x ∈ Λ : lim

t→∞

a+
t (x)

t
= α

}
and

K−β =

{
x ∈ Λ : lim

t→∞

a−t (x)

t
= β

}
.

Our main result is a variational principle for the dimension spectrum

D(α, β) = dimH(K+
α ∩K−β ).

We also consider the maps P± : MΦ → R defined by

P+(µ) = lim
t→∞

1

t

∫
Λ
a+
t dµ, P−(µ) = lim

t→∞

1

t

∫
Λ
a−t dµ,

as well as the functions

ξs(x) = lim
t→0

log ‖dxφt|Es(x)‖
t

, ξu(x) = lim
t→0

log ‖dxφt|Eu(x)‖
t

,

where Es(x) and Eu(x) are the stable and unstable spaces at x.
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Theorem 1. Let Φ be a C1+ε flow with a locally maximal hyperbolic set Λ
such that Φ is conformal and topologically mixing on Λ. Then:

(1) if α ∈ intP+(MΦ) and β ∈ intP−(MΦ), then

D(α, β) = max

{
hµ(Φ)∫
Λ ξu dµ

: µ ∈MΦ and P+(µ) = α

}
+ max

{
hµ(Φ)

−
∫

Λ ξs dµ
: µ ∈MΦ and P−(µ) = β

}
+ 1;

(2) D is continuous on intP+(MΦ)× intP−(MΦ).

A corresponding result for discrete time was obtained earlier in [4] for
almost additive sequences, on a conformal locally maximal hyperbolic set
for a diffeomorphism. To the possible extent we follow their approach by
using Markov systems for the hyperbolic set and the associated symbolic
dynamics along the stable and unstable invariant manifolds.

2. Thermodynamic formalism

2.1. Topological pressure. Let Φ = (φt)t∈R be a continuous flow on a
compact metric space (X, d). Moreover, let a = (at)t≥0 be a family of
continuous functions at : X → R with tempered variation, that is, such that

lim
ε→0

lim
t→∞

γt(a, ε)

t
= 0, (3)

where

γt(a, ε) = sup
{
|at(y)− at(x)| : y ∈ Bt(x, ε) for some x ∈ X

}
and

Bt(x, ε) =
{
y ∈ X : d(φs(y), φs(x)) < ε for s ∈ [0, t]

}
.

Given ε > 0, we say that Γ ⊂ X × R+
0 covers a set Z ⊂ X if⋃

(x,t)∈Γ

Bt(x, ε) ⊃ Z

and we write

a(x, t, ε) = sup
{
at(y) : y ∈ Bt(x, ε)

}
for (x, t) ∈ Γ. For each Z ⊂ X and α ∈ R, let

M(Z, a, α, ε) = lim
T→∞

inf
Γ

∑
(x,t)∈Γ

exp(a(x, t, ε)− αt),

with the infimum taken over all countable sets Γ ⊂ X× [T,+∞) covering Z.
When α goes from −∞ to +∞, the map α 7→M(Z, a, α, ε) jumps from +∞
to 0 at a unique value and so one can define

PΦ(a|Z , ε) = inf
{
α ∈ R : M(Z, a, α, ε) = 0

}
.

Moreover, the limit

PΦ(a|Z) = lim
ε→0

PΦ(a|Z , ε)

exists and is called the topological pressure of the family a on the set Z. For
simplicity of the notation, we shall also write PΦ(a|X) = PΦ(a).
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The classical notion of topological pressure for a flow corresponds to con-
sider a family of continuous functions a = (at)t≥0 defined by

at(x) =

∫ t

0
b(φs(x)) ds

for some continuous function b : X → R. One can easily verify that (3) holds
for this family and we write P (b) = PΦ(a).

2.2. u-dimension for flows. Given a continuous function u : X → R+, we
consider the family of continuous functions ū = (ut)t≥0 defined by

ut(x) =

∫ t

0
u(φs(x)) ds

for every x ∈ X and t ≥ 0. For each Z ⊂ X and α ∈ R, let

N(Z, u, α, ε) = lim
T→∞

inf
Γ

∑
(x,t)∈Γ

e−αu(x,t,ε),

with the infimum taken over all countable sets Γ ⊂ X× [T,+∞) covering Z.
Finally, let

dimu,ε Z = inf
{
α ∈ R : N(Z, u, α, ε) = 0

}
.

The limit

dimu Z := lim
ε→0

dimu,ε Z

exists and is called the u-dimension of the set Z (with respect to the flow Φ).
One can easily verify that dimu Z = α, where α is the unique root of the
equation PΦ(−αū|Z) = 0.

3. Flows and hyperbolicity

3.1. Hyperbolic sets. Let Φ = (φt)t∈R be a C1 flow on a smooth mani-
fold M with distance d. A compact Φ-invariant set Λ ⊂ M is said to be a
hyperbolic set for Φ if there exist a splitting

TΛM = Es ⊕ Eu ⊕ EΦ

and constants c > 0 and λ ∈ (0, 1) such that for each x ∈ Λ:

(1) the vector (d/dt)φt(x)|t=0 generates EΦ(x);
(2) for each t ∈ R we have

dxφtE
s(x) = Es(φt(x)) and dxφtE

u(x) = Eu(φt(x));

(3)

‖dxφtv‖ ≤ cλt‖v‖ for v ∈ Es(x), t > 0;

(4)

‖dxφ−tv‖ ≤ cλt‖v‖ for v ∈ Eu(x), t > 0.

Given a hyperbolic set Λ and ε > 0, for each x ∈ Λ let V s(x) and V u(x) be,
respectively, the connected components of the sets

As(x) =
{
y ∈ B(x, ε) : d(φt(y), φt(x))→ 0 when t→ +∞

}
and

Au(x) =
{
y ∈ B(x, ε) : d(φt(y), φt(x))→ 0 when t→ −∞

}
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containing x. The sets V s(x) and V u(x) are called, respectively, stable and
unstable local manifolds at x (of size ε). We have the following properties:

(1) TxV
s(x) = Es(x) and TxV

u(x) = Eu(x);
(2) for each t > 0 we have

φt(V
s(x)) ⊂ V s(φt(x)) and φ−t(V

u(x)) ⊂ V u(φ−t(x));

(3) there exist d > 0 and µ ∈ (0, 1) such that

d(φt(y), φt(x)) ≤ dµtd(y, x) for t > 0, y ∈ V s(x) (4)

and

d(φ−t(y), φ−t(x)) ≤ dµtd(y, x) for t > 0, y ∈ V u(x).

Given a locally maximal hyperbolic set Λ (that is, a hyperbolic set Λ such
that Λ =

⋂
t∈R φt(U) for some open neighborhood U of Λ) and a sufficiently

small τ > 0, there exists δ > 0 such that if x, y ∈ Λ are at a distance
d(x, y) ≤ δ, then there exists a unique t = t(x, y) ∈ [−τ, τ ] such that

[x, y] := V s(φt(x)) ∩ V u(y)

is a single point of Λ.

3.2. Conformal flows. We say that a C1 flow Φ is conformal on a hy-
perbolic set Λ if there exist continuous functions P s, P u : Λ × R → R such
that

dxφt|Es(x) = P s(x, t)Is(x, t) and dxφt|Eu(x) = P u(x, t)Iu(x, t)

for every x ∈ Λ and t ∈ R, where

Is(x, t) : Es(x)→ Es(φt(x)) and Iu(x, t) : Eu(x)→ Eu(φt(x))

are isometries. For example, if

dimEs(x) = dimEu(x) = 1 for x ∈ Λ,

then the flow is conformal on Λ. Following [12] we define:

ξs(x) :=
∂

∂t
log |P s(x, t)|t=0

=
∂

∂t
log ‖dxφt|Es(x)‖t=0

= lim
t→0

log ‖dxφt|Es(x)‖
t

(5)

and

ξu(x) :=
∂

∂t
log |P u(x, t)|t=0

=
∂

∂t
log ‖dxφt|Eu(x)‖t=0

= lim
t→0

log ‖dxφt|Eu(x)‖
t

.

(6)
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Since the flow Φ is of class C1, using 2-norms one can write

lim
t→0

log ‖dxφt|Es(x)‖
t

= lim
t→0

log(‖dxφt|Es(x)‖2)

2t

= lim
t→0

〈dxφt|Es(x), ∂∂t(dxφt|E
s(x))〉

‖dxφt|Eu(x)‖2

=

〈
Id|Es(x),

∂

∂t
(dxφt|Es(x))|t=0

〉
and, similarly,

lim
t→0

log ‖dxφt|Eu(x)‖
t

=

〈
Id|Eu(x),

∂

∂t
(dxφt|Eu(x))|t=0

〉
.

In particular, the functions ξs and ξu are well defined. Furthermore:

(1) Since the maps x 7→ Es(x) and x 7→ Eu(x) are Hölder continuous,
the functions ξs and ξu are also Hölder continuous.

(2) For an adapted norm ‖·‖ (that is, a norm for which one can take
c = 1 in the definition of a hyperbolic set), we obtain

ξs(x) = lim
t→0+

log ‖dxφt|Es(x)‖
t

≤ log λ < 0

and

ξu(x) = lim
t→0+

log ‖dxφt|Eu(x)‖
t

≥ − log λ > 0

for all x ∈ Λ.
(3) For every x ∈ Λ and t ∈ R, it follows from (5) and (6) that

‖dxφtv‖ = ‖v‖ exp

(∫ t

0
ξs(φτ (x)) dτ

)
for v ∈ Es(x)

and

‖dxφtv‖ = ‖v‖ exp

(∫ t

0
ξu(φτ (x)) dτ

)
for v ∈ Eu(x). (7)

4. Almost additive families

In this section we introduce the general context of our work: the study of
level sets associated with almost additive families of continuous functions.
Let Φ = (φt)t∈R be a continuous flow on a compact metric space (X, d).

A family a = (at)t≥0 of continuous functions at : Λ → R is said to be
almost additive into the future if there exists a constant C1 > 0 such that

−C1 ≤ at+s(x)− at(x)− as(φt(x)) ≤ C1

for every x ∈ Λ and t, s ≥ 0. Analogously, a family a = (at)t≥0 is said to be
almost additive into the past if there exists a constant C2 > 0 such that

−C2 ≤ at+s(x)− at(x)− as(φ−t(x)) ≤ C2

for every x ∈ Λ and t, s ≥ 0. We recall that a family a = (at)t≥0 is said to
have bounded variation (with respect to the flow Φ) if for every κ > 0 there
exists ε > 0 such that

|at(x)− at(y)| < κ whenever y ∈ Bt(x, ε).
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We denote by A+ the set of all families a = (at)t≥0 of continuous functions
at : Λ→ R with bounded variation with respect to the flow Φ that are almost
additive into the future and satisfy

sup
t∈[0,s]

‖at‖∞ < +∞ for some s > 0. (8)

Similarly, we denote by A− the set of all families a = (at)t≥0 of continu-
ous functions at : Λ → R with bounded variation with respect to the flow
(φ−t)t∈R that are almost additive into the past and satisfy

sup
t∈[−s,0]

‖at‖∞ < +∞ for some s > 0.

Now consider pairs (a+, b+) ∈ A+×A+ and (a−, b−) ∈ A−×A− such that

lim inf
t→∞

b±t (x)

t
> 0 and b±t (x) > 0 (9)

for every x ∈ Λ and t ≥ 0. Given α, β ∈ R, we consider the level sets

K+
α =

{
x ∈ Λ : lim

t→∞

a+
t (x)

b+t (x)
= α

}
(10)

and

K−β =

{
x ∈ Λ : lim

t→∞

a−t (x)

b−t (x)
= β

}
. (11)

We also consider the sets K+
α ∩K−β that consider simultaneously the asymp-

totic behaviors into the future and into the past.
It was shown in [6] that if a is an almost additive family of continuous func-

tions (into the future) with tempered variation such that supt∈[0,s] ‖at‖∞ <
∞ for some s > 0, then we have the variational principle

PΦ(a) = sup
µ∈MΦ

(
hµ(Φ) + lim

t→∞

1

t

∫
Λ
at dµ

)
, (12)

where MΦ is the set of all Φ-invariant probability measures on Λ and where
hµ(Φ) is the Kolmogorov–Sinai entropy of µ. We say that a measure µ ∈MΦ

is an equilibrium measure for the almost additive family a (with respect to
the flow Φ) if the supremum in (12) is attained at µ, that is, if

PΦ(a) = hµ(Φ) + lim
t→∞

1

t

∫
Λ
at dµ.

5. Dimensions along the stable and unstable directions

In this section we obtain formulas for the Hausdorff dimensions of the
level sets K+

α and K−β in (10) and (11) in terms of the topological pressure.

Before proceeding we recall a result of Pesin and Sadovskaya in [12] on
the Hausdorff dimensions of a hyperbolic set along the stable and unstable
local manifolds. We denote by dimH S, dimBS and dimBS, respectively, the
Hausdorff dimension, the lower box dimension and the upper box dimension
of a set S.
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Proposition 2 ([12, Theorem 4.1]). Let Φ be a C1+ε flow with a locally
maximal hyperbolic set Λ such that Φ is conformal and topologically mixing
on Λ. For every x ∈ Λ we have

dimH(Λ ∩ V s(x)) = dimB(Λ ∩ V s(x)) = dimB(Λ ∩ V s(x)) = ts

and

dimH(Λ ∩ V u(x)) = dimB(Λ ∩ V u(x)) = dimB(Λ ∩ V u(x)) = tu,

where ts and tu are the unique real numbers such that

P (tsξs) = 0 and P (−tuξu) = 0.

The following result describes the Hausdorff dimensions of the level sets
K+
α and K−β in terms of the topological pressure.

Theorem 3. Let Φ be a C1+ε flow with a locally maximal hyperbolic set Λ
such that Φ is conformal and topologically mixing on Λ and take pairs

(a+, b+) ∈ A+ ×A+ and (a−, b−) ∈ A− ×A−

satisfying (9). For each (α, β) ∈ R2, x+ ∈ K+
α and x− ∈ K−β , we have:

(1)

Λ ∩ V s(x+) ⊂ K+
α and Λ ∩ V u(x−) ⊂ K−β ; (13)

(2)

dimH K
+
α = dimH(K+

α ∩ V u(x+)) + ts + 1

= dimξu K
+
α + ts + 1

(14)

and

dimH K
−
β = dimH(K−β ∩ V

s(x−)) + tu + 1

= dim−ξs K
−
β + tu + 1.

(15)

Proof. Since the families a+ and b+ have bounded variation, given κ > 0,
there exists ε > 0 such that

|a+
t (y)− a+

t (z)| < κ and |b+t (y)− b+t (z)| < κ

for y, z ∈ Bt(x+, ε). Now take y, z ∈ V s(x+). Provided that y and z are
sufficiently close, it follows from (4) that y, z ∈ Bt(x+, ε). We have∣∣∣∣a+

t (y)

b+t (y)
− a+

t (z)

b+t (z)

∣∣∣∣ =

∣∣∣∣a+
t (y)

b+t (y)
− a+

t (z)

b+t (y)
+
a+
t (z)

b+t (y)
− a+

t (z)

b+t (z)

∣∣∣∣
≤ |a

+
t (y)− a+

t (z)|
b+t (y)

+ |a+
t (z)| ·

∣∣∣∣ 1

b+t (y)
− 1

b+t (z)

∣∣∣∣
=
|a+
t (y)− a+

t (z)|
b+t (y)

+ |a+
t (z)| · |b

+
t (y)− b+t (z)|
b+t (y)b+t (z)

.

Since a+ is almost additive, by (8) there exists K > 0 such that

‖a+
t (y)‖ ≤ K(1 + t) for all y ∈ Λ, t ≥ 0.

Moreover, by (9), there exists C > 0 such that

‖b+t (y)‖ ≥ Ct for all y ∈ Λ, t ≥ 0.
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Therefore, ∣∣∣∣a+
t (y)

b+t (y)
− a+

t (z)

b+t (z)

∣∣∣∣ ≤ κ

Ct
+K(1 + t)

κ

C2t2

and so

lim
t→∞

∣∣∣∣a+
t (y)

b+t (y)
− a+

t (z)

b+t (z)

∣∣∣∣ = 0. (16)

Now we cover a compact neighborhood of x+ in V s(x+) with sufficiently
small balls By := B(y, r)∩V s(x+) such that property (16) holds for z ∈ By.
Taking a finite subcover, it follows readily from (16) that

lim
t→∞

a+
t (y)

b+t (y)
= lim

t→∞

a+
t (x+)

b+t (x+)
= α

for all y in the compact neighborhood of x+ in V s(x+). In other words,

Λ ∩ V s(x+) ⊂ K+
α for every x+ ∈ K+

α .

One can establish the second inclusion in (13) in a similar manner.
Since the set K+

α is Φ-invariant (see [6]), we have

Λ ∩
⋃
t∈R

φt(V
s(x+)) ⊂ K+

α .

On the other hand, since Φ|Λ is conformal, it follows from results in [9] that
the maps

x 7→ Es(x)⊕ EΦ(x) and x 7→ Eu(x)⊕ EΦ(x)

are Lipschitz. This implies that on a sufficiently small open neighborhood of
a point x+ ∈ K+

α , there exists a Lipschitz map with Lipschitz inverse from
K+
α onto the product

(Λ ∩ V u
I (x+))× (K+

α ∩ V u(x+)),

where

V u
I (x+) =

⋃
t∈I

φt(V
s(x+))

for some open interval I ⊂ R containing zero. Therefore,

dimH K
+
α = dimH

[
(Λ ∩ V u

I (x+))× (K+
α ∩ V u(x+))

]
.

By Proposition 2, we have

dimH(Λ ∩ V u
I (x+)) = dimB(Λ ∩ V u

I (x+)) = ts + 1. (17)

Since

dimH S1 + dimH S2 ≤ dimH(S1 × S2) ≤ dimBS1 + dimH S2

for any sets S1, S2 ⊂ Rn, it follows from (17) that

dimH K
+
α = dimH(K+

α ∩ V u(x+)) + ts + 1,

which is the first equality in (14). The first equality in (15) can be obtained
in a similar manner.

Now we establish the second equality in (14). Let

ξu(x, t, ε) = sup
{
at(y) : y ∈ Bt(x, ε)

}
,
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where

at(x) =

∫ t

0
ξu(φs(x)) ds.

Since the function ξu is Hölder continuous, it follows from (7) that given
ε > 0, there exist constants k1, k2 > 0 such that

k1e
−γξu(x,t,ε) ≤

[
diam

(
Bt(x, ε) ∩ V u(x+)

)]γ ≤ k2e
−γξu(x,t,ε)

for every x ∈ Λ, t > 0 and γ > 0. This readily implies that

dimξu S = dimH(S ∩ V u(x+))

for any set S ⊂ Λ. In particular, taking S = K+
α we obtain

dimH(K+
α ∩ V u(x+)) = dimξu K

+
α .

One can obtain in a similar manner a corresponding result for K−β . �

6. Conditional variational principle

6.1. Formulation of the result. In this section we obtain a conditional
variational principle for the dimension spectrum

D(α, β) = dimH(K+
α ∩K−β )

obtained from families of continuous functions (a±, b±) ∈ A±×A±. We also
consider the functions P±Φ : MΦ → R defined by

P+
Φ(µ) = lim

t→∞

∫
Λ a

+
t dµ∫

Λ b
+
t dµ

and P−Φ(µ) = lim
t→∞

∫
Λ a
−
t dµ∫

Λ b
−
t dµ

,

where MΦ is the set of all Φ-invariant probability measures on Λ. The
following theorem is the main result of this section.

Theorem 4. Let Φ be a C1+ε flow with a locally maximal hyperbolic set Λ
such that Φ is conformal and topologically mixing on Λ and take pairs

(a+, b+) ∈ A+ ×A+ and (a−, b−) ∈ A− ×A−

satisfying (9). Then the following properties hold:

(1) if α ∈ intP+
Φ(MΦ) and β ∈ intP−Φ(MΦ), then

D(α, β) = dimH K
+
α + dimH K

−
β − dimH Λ

= max

{
hµ(Φ)∫
Λ ξu dµ

: µ ∈MΦ and P+
Φ(µ) = α

}
+ max

{
hµ(Φ)

−
∫

Λ ξs dµ
: µ ∈MΦ and P−Φ(µ) = β

}
+ 1;

(2) D is continuous on intP+
Φ(MΦ)× intP−Φ(MΦ).



DIMENSION SPECTRA FOR FLOWS: FUTURE AND PAST 11

6.2. Markov systems. For the proof of Theorem 4 we need the notion of
a Markov system and its associated symbolic dynamics. Let D ⊂ M be an
open smooth disk of dimension dimM −1 transverse to the flow Φ and take
x ∈ D. Let U(x) be an open neighborhood of x diffeomorphic to D×(−ε, ε).
A closed set R ⊂ Λ ∩D is called a rectangle if

R = intR and πD([x, y]) ∈ R for x, y ∈ R.
Now consider rectangles R1, . . . , Rk ⊂ Λ such that

Ri ∩Rj = ∂Ri ∩ ∂Rj for i 6= j

and let Z =
⋃k
i=1Ri. We assume that Λ =

⋃
t∈[0,ε] φt(Z) and that either

φt(Ri) ∩Rj = ∅ for all t ∈ [0, ε]

or
φt(Rj) ∩Ri = ∅ for all t ∈ [0, ε]

when i 6= j. We define the corresponding transfer function τ : Λ→ R+
0 by

τ(x) = min
{
t > 0 : φt(x) ∈ Z

}
and the transfer map T : Λ → Z by T (x) = φτ(x)(x). The restriction TZ of
T to Z is invertible and we have Tn(x) = φτn(x)(x), where

τn(x) =
n−1∑
i=0

τ(T i(x)).

The collection R1, . . . , Rk is called a Markov system for Φ on Λ if

T (int(V s(x) ∩Ri)) ⊂ int(V s(T (x)) ∩Rj)
and

T−1(int(V u(T (x)) ∩Rj)) ⊂ int(V u(x) ∩Ri)
for every x ∈ intT (Ri) ∩ intRj and i, j = 1, . . . , k. By work of Bowen [7]
and Ratner [13], any locally maximal hyperbolic set Λ has Markov systems
of arbitrarily small diameter.

Given a Markov system R1, . . . , Rk for a flow Φ on a locally maximal
hyperbolic set Λ, we consider the k × k matrix A with entries

aij =

{
1 if intT (Ri) ∩Rj 6= ∅,
0 otherwise.

We also consider the set

ΣA =
{

(· · · i−1i0i1 · · · ) ∈ {1, . . . , k}Z : ainin+1 = 1 for n ∈ Z
}

and the shift map σ : ΣA → ΣA defined by σ(· · · i0 · · · ) = (· · · j0 · · · ), where
jn = in+1 for each n ∈ Z. Finally, we define a coding map π : ΣA → Z by

π(· · · i0 · · · ) =
⋂
n∈Z

Ri−n···in ,

where Ri−n···in =
⋂n
l=−n T

−l
Z intRil . Then the following properties hold:

(1) π ◦ σ = T ◦ π;
(2) π is Hölder continuous on each domain of continuity and is onto;
(3) π is one-to-one on a full measure set with respect to any ergodic

measure of full support and on a residual set.
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In addition, we consider the sets

Σ+
A =

{
(i0i1 · · · ) : (· · · i−1i0i1 · · · ) ∈ ΣA

}
and

Σ−A =
{

(· · · i−1i0) : (· · · i−1i0i1 · · · ) ∈ ΣA

}
.

The shift maps σ+ : Σ+
A → Σ+

A and σ− : Σ−A → Σ−A are defined by

σ+(j0j1j2 · · · ) = (j1j2 · · · ) and σ−(· · · j−2j−1j0) = (· · · j−2j−1).

We describe briefly the relation of the symbolic dynamics to the stable
and unstable manifolds. Given x ∈ Z, take ω ∈ ΣA such that π(ω) = x
and let R(x) be the rectangle of the Markov system containing x. For each
ω̃ ∈ ΣA, we have

π(ω̃) ∈ V u(x) ∩R(x) whenever ρ+(ω̃) = ρ+(ω)

and

π(ω̃) ∈ V s(x) ∩R(x) whenever ρ−(ω̃) = ρ−(ω),

where ρ+ : ΣA → Σ+
A and ρ− : ΣA → Σ−A are the projections given by

ρ+(ω) = (i0i1 · · · ) and ρ−(ω) = (· · · i−1i0)

for ω = (· · · i−1i0i1 · · · ) ∈ ΣA. The set V u(x) ∩ R(x) is identified with the
cylinder

C+
i0

=
{

(j0j1 · · · ) ∈ Σ+
A : j0 = i0

}
,

and the set V s(x) ∩R(x) is identified with the cylinder

C−i0 =
{

(· · · j−1j0) ∈ Σ−A : j0 = i0
}
.

6.3. Equilibrium measures. Now let ν be a TZ-invariant probability mea-
sure on Z. One can verify that ν induces a Φ-invariant probability measure µ
on Λ such that ∫

Λ
g dµ =

∫
Z

∫ τ(x)
0 (g ◦ φs)(x) ds dν∫

Z τ dν
(18)

for any continuous function g : Λ → R. Moreover, any Φ-invariant prob-
ability measure µ on Λ is of this form for some TZ-invariant probability
measure ν on Z. Abramov’s entropy formula says that

hµ(Φ) =
hν(TZ)∫
Z τ dν

. (19)

By (18) and (19) we have

hµ(Φ) +

∫
Λ
g dµ =

hν(TZ) +
∫
Z Ig dν∫

Z τ dν
,

where

Ig(x) =

∫ τ(x)

0
(g ◦ φs)(x) ds.
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6.4. Construction of auxiliary measures. Given pairs of families of con-
tinuous functions (a±, b±) ∈ A±×A± satisfying (9), we define sequences c±

and d± by

c±n (x) = a±τn(x)(x) and d±n (x) = b±τn(x)(x)

for every x ∈ Z and n ∈ N. By Lemmas 8 and 10 in [5], the sequences c±

and d± are almost additive and have bounded variation with respect to TZ
and T−1

Z , respectively. Moreover, we have

lim inf
n→∞

d±n (x)

n
> 0 and d±n (x) > 0

for every x ∈ Z and n ∈ N. The following result is a simple adaptation of
Lemma 1 in [4] for the map TZ .

Lemma 5. There exist sequences cu and du composed of continuous func-
tions cun, d

u
n : Σ+

A → R and numbers γ1, γ2 > 0 such that

(1) for every n ∈ N and ω ∈ ΣA we have

|c+
n (π(ω))− cun(ρ+(ω))| ≤ γ1

and

|d+
n (π(ω))− dun(ρ+(ω))| ≤ γ2;

(2) cu and du are almost additive sequences and have bounded variation
with respect to σ+;

(3) c+ ◦π, cu ◦ ρ+, d+ ◦π and du ◦ ρ+ are almost additive sequences and
have bounded variation with respect to σ;

(4) PTZ (c+) = Pσ+(cu), Pσ(c+ ◦ π) = Pσ(cu ◦ ρ+), PTZ (d+) = Pσ+(du)
and Pσ(d+ ◦ π) = Pσ(du ◦ ρ+);

(5) c+ ◦ π and cu ◦ ρ+ have the same equilibrium measures and d+ ◦ π
and du ◦ ρ+ have the same equilibrium measures;

(6) the limit

lim
n→∞

(c+
n ◦ π)(ω)

(d+
n ◦ π)(ω)

exists if and only if the limit

lim
n→∞

(cun ◦ ρ+)(ω)

(dun ◦ ρ+)(ω)

exists, in which case they are equal.

Similarly, there also exist sequences cs and ds of continuous functions
csn, d

s
n : Σ−A → R satisfying the statement in Lemma 5 with c+, d+, ρ+, σ+

and TZ replaced, respectively, by c−, d−, ρ−, σ− and T−1
Z .

Given q± ∈ R, we consider the almost additive sequences U on Σ+
A and

S on Σ−A defined by

U = q+(cu − αdu)−D+
n−1∑
k=0

(gu ◦ σk+)

and

S = q−(cs − βds)−D−
n−1∑
k=0

(gs ◦ σk−),
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where

D+ = dimH K
+
α − ts − 1 and D− = dimH K

−
β − tu − 1, (20)

and where

gu : Σ+
A → R and gs : Σ−A → R

are Hölder continuous functions such that gu ◦ ρ+ and gs ◦ ρ− are cohomol-
ogous, respectively, to Iξu ◦ π and I−ξs ◦ π. We note that U has bounded
variation with respect to σ+ and that S has bounded variation with re-
spect to σ−. Since the maps TZ and T−1

Z are topologically mixing, it follows

from Theorem 12 in [1] that U has a unique equilibrium measure µu on Σ+
A

(with respect to σ+) and that S has a unique equilibrium measure µs on Σ−A
(with respect to σ−). Denoting by MTZ the set of all TZ-invariant (and

thus also T−1
Z -invariant) probability measures on Z, we consider the maps

P±TZ : MTZ → R defined by

P+
TZ

(µ) := lim
n→∞

∫
Z c

+
n dµ∫

Z d
+
n dµ

and P−TZ (µ) := lim
n→∞

∫
Z c
−
n dµ∫

Z d
−
n dµ

.

Lemma 6. For each α and β as in Theorem 4, there exist q+, q− ∈ R with

Pσ+(U) = Pσ−(S) = 0

such that the measures µu and µs satisfy

lim
n→∞

1

n

∫
Σ+
A

cun dµ
u = α lim

n→∞

1

n

∫
Σ+
A

dundµ
u

and

lim
n→∞

1

n

∫
Σ−
A

csn dµ
s = β lim

n→∞

1

n

∫
Σ−
A

dsn dµ
s.

Proof. Since ξu is Hölder continuous, the additive family of continuous func-
tions ξ̄u = ((ξu)t)t≥0 defined by

(ξu)t(x) =

∫ t

0
ξu(φs(x)) ds

has bounded variation and satisfies condition (8). Therefore, by Theorem 3.5
in [5], each linear combination of the families a+, b+ and ξ̄u has a unique
equilibrium measure. This allows us to apply Theorem 8 in [6] to conclude
that for each α ∈ intP+

Φ(MΦ) there exists an ergodic measure µα ∈MΦ such
that

α = P+
Φ(µα) = lim

t→∞

∫
Λ a

+
t dµα∫

Λ b
+
t dµα

.

Moreover, by Lemma 3.4 in [5] we have

lim
t→∞

1

t

∫
Λ
a±t dµα = lim

n→∞

1

n

∫
Z
c±n dνα

/∫
Z
τ dν,

where να is the TZ-invariant measure on Z that induces the measure µα
on Λ as in (18), and so

lim
t→∞

∫
Λ a

+
t dµα∫

Λ b
+
t dµα

= lim
n→∞

∫
Z c

+
n dνα∫

Z d
+
n dνα

= P+
TZ

(να).
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Therefore, α ∈ intPTZ (MTZ ). By Lemma 5, for each ν ∈MTZ we have

P+
TZ

(ν) = lim
n→∞

∫
ΣA

c+
n ◦ π dm∫

ΣA
d+
n ◦ π dm

= lim
n→∞

∫
ΣA

cun ◦ ρ+ dm∫
ΣA

dun ◦ ρ+ dm
= lim

n→∞

∫
Σ+
A
cun dη∫

Σ+
A
dun dη

,

where m = ν ◦ π and η = m ◦ ρ−1
+ . Therefore, denoting by Mσ± the set of

all σ±-invariant probability measures on Σ±A and letting

P+
σ+

(η) = lim
n→∞

∫
Σ+
A
cun dη∫

Σ+
A
dun dη

and P−σ−(η) = lim
n→∞

∫
Σ−
A
csn dη∫

Σ−
A
dsn dη

,

we conclude that α ∈ intP+
σ+

(Mσ+). Hence, it follows from Theorem 3 in [3]

that there exists q+(α) ∈ R such that

Pσ+(U) = 0 and P+
σ+

(µu) = α.

One can show in a similar manner that there exists q−(β) ∈ R such that

Pσ−(S) = 0 and P−σ−(µs) = β.

This completes the proof of the lemma. �

6.5. Estimates for the pointwise dimension. Recall that Z =
⋃k
i=1Ri.

We denote by R(x) the rectangle of the Markov system that contains x.
Taking q+ and q− as in Lemma 6 (notice that µu depends on q+ and that
µs depends on q−), we define measures νu and νs on R(x) by

νu = µu ◦ ρ+ ◦ π−1 and νs = µs ◦ ρ− ◦ π−1.

We also define a measure ν on R(x) by ν = νu × νs. Since the measures
µu and µs have the Gibbs property (see for example Theorem 11 in [5]), for
x = π(ω) with ω = (· · · i0 · · · ) we have

ν(R(x)) = µu(C+
i0

)µs(C−i0 ) > 0.

Lemma 7. For ν-almost every x ∈ Z, we have

lim inf
r→0

log ν(B(x, r))

log r
≥ dimH K

+
α + dimH K

+
β − dimH Λ− 1.

Proof. It follows from Lemma 6 and Birkhoff’s ergodic theorem that

0 = Pσ+(U)

= hµu(σ+) + lim
n→∞

1

n

∫
Σ+
A

Un dµ
u

= hµu(σ+)−D+ 1

n

∫
Σ+
A

lim
n→∞

1

n

n−1∑
k=0

(gu ◦ σk+) dµu

= hµu(σ+)−D+

∫
Σ+
A

gu dµu.

Similarly, we also obtain

0 = Pσ−(S) = hµs(σ−)−D−
∫

Σ−
A

gs dµs.
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This implies that

D+ =
hµu(σ+)∫
Σ+
A
gu dµu

and D− =
hµu(σ−)∫
Σ−
A
gs dµs

. (21)

By the Shannon–McMillan–Breiman theorem, we have

hµu(σ+) =

∫
Σ+
A

lim
n→∞

− 1

n
logµu(C+

i0···in) dµu(ω+),

hµs(σ−) =

∫
Σ−
A

lim
m→∞

− 1

m
logµs(C−i−m···i0) dµs(ω−).

(22)

Moreover, since µu and µs are ergodic measures, it follows from Birkhoff’s
ergodic theorem that

lim
n→∞

1

n

n∑
k=0

(gu ◦ σk+)(ω+) =

∫
Σ+
A

gu dµu,

lim
n→∞

1

n

n∑
k=0

(gs ◦ σk−)(ω−) =

∫
Σ−
A

gs dµs
(23)

for µu-almost every ω+ ∈ Σ+
A and µs-almost every ω− ∈ Σ−A.

By (21) together with (22) and (23), given ε > 0, for µu-almost every
ρ+(ω) = ω+ ∈ C+

i0
and µs-almost every ρ−(ω) = ω− ∈ C−i0 , there exists

N1(ω) ∈ N such that

D+ − ε < −
logµu(C+

i0···in)∑n
k=0(gu ◦ σk+)(ω+)

< D+ + ε,

D− − ε < −
logµs(C−i−m···i0)∑m
k=0(gu ◦ σk−)(ω−)

< D− + ε

(24)

for all n,m > N1(ω). On the other hand, since inf τ > 0, we have

Iξu(π(ω)) =

∫ τ(π(ω))

0
(ξu ◦ φq)(π(ω)) dq ≥ inf τ(− log λ) > 0,

I−ξs(π(ω)) =

∫ τ(π(ω))

0
(−ξs ◦ φq)(π(ω)) dq ≥ inf τ(− log λ) > 0

(25)

for all ω ∈ ΣA. Since gu◦ρ+ is cohomologous to Iξu◦π and gs◦ρ− is cohomol-
ogous to I−ξs ◦π, there exist bounded measurable functions ψu, ψs : ΣA → R
such that

gu ◦ ρ+ − Iξu ◦ π = ψu ◦ σ+ − ψu

and
gs ◦ ρ− − I−ξs ◦ π = ψs ◦ σ− − ψs.

Since ψs and ψu are bounded, it follows from (25) that for any sufficiently
small r > 0 there exist unique integers n = n(ω, r) and m = m(ω, r) with

n∑
k=0

(gu ◦ σk+)(ω+) < − log r ≤
n+1∑
k=0

(gu ◦ σk+)(ω+),

m∑
k=0

(gs ◦ σk−)(ω−) < − log r ≤
m+1∑
k=0

(gu ◦ σk+)(ω−).

(26)



DIMENSION SPECTRA FOR FLOWS: FUTURE AND PAST 17

Moreover, we have the following result.

Lemma 8. r → 0 if and only if n(ω, r),m(ω, r)→∞.

Proof of the lemma. It follows from (26) that

− log r ≤
n+1∑
k=0

(gu ◦ σk+)(ω+)

=

n+1∑
k=0

(Iξu ◦ π)(σk(ω)) + ψu(σn+2
+ (ω))− ψu(ω)

≤ (n+ 2)‖Iξu‖∞ + 2‖ψu‖∞

(27)

and

− log r >
n∑
k=0

(gu ◦ σk+)(ω+)

=

n∑
k=0

(Iξu ◦ π)(σk(ω)) + ψu(σn+1
+ (ω))− ψu(ω)

≥ (n+ 1) inf Iξu − 2‖ψu‖∞.

(28)

Analogously, we also have

− log r ≤ (m+ 2)‖I−ξs‖∞ + 2‖ψs‖∞ (29)

and
− log r > (m+ 1) inf I−ξs − 2‖ψs‖∞. (30)

It follows readily from (25) together with (27), (28), (29) and (30) that r → 0
if and only if n(ω, r),m(ω, r)→∞. �

Proceeding as in the proof of Lemma 3 in [4], we find that given ε > 0,
there exist % > 1 (independent of r and x = π(ω)) and δ = δ(x, ε, %) > 0
such that

ν(B(x, r)) ≤ ν(Ci−m···in)

(
r

%

)−ε
= µu(C+

i0···in)µs(C−i−m···i0)

(
r

%

)−ε
for r < δ and for ν-almost every x ∈ Z. By Lemma 8 together with (24)
and (26), we obtain

ν(B(x, r)) ≤ exp
[
(log r+‖gu‖∞)(D+−ε)+(log r+‖gs‖∞)(D−−ε)

](r
%

)−ε
and taking r < 1 sufficiently small yields the inequality

log ν(B(x, r))

log r
≥ D+ +D− − 3ε+

‖gu‖∞(D+ − ε)
log r

+
‖gs‖∞(D− − ε)

log r
+
ε log %

log r
.

Finally, since ε > 0 is arbitrary, we conclude that

lim inf
r→0

log ν(B(x, r))

log r
≥ D+ +D− (31)
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for ν-almost every x ∈ Z. On the other hand, by Theorem 4.2 in [12] we have

dimH Λ = tu + ts + 1 (32)

and it follows from (20) and (31) that

lim inf
r→0

log ν(B(x, r))

log r
≥ dimH K

+
α + dimH K

−
β − (tu + ts + 1)− 1

= dimH K
+
α + dimH K

−
β − dimH Λ− 1.

This completes the proof of the lemma. �

Lemma 9. For each x ∈ K+
α ∩K−β ∩ Z, we have

lim sup
r→0

log ν(B(x, r))

log r
≤ dimH K

+
α + dimH K

+
β − dimH Λ− 1.

Proof. By Lemma 12 in [6], we have

lim sup
t→∞

a±t (x)

b±t (x)
= lim sup

n→∞

c±n (x)

d±n (x)
and lim inf

t→∞

a±t (x)

b±t (x)
= lim inf

n→∞

c±n (x)

d±n (x)

for every x ∈ Z. Therefore,

K+
α ∩K−β ∩ Z =

{
x ∈ Z : lim

t→∞

a+
t (x)

b+t (x)
= α and lim

t→∞

a−t (x)

b−t (x)
= β

}
=

{
x ∈ Z : lim

n→∞

c+
n (x)

d+
n (x)

= α and lim
n→∞

c−n (x)

d−n (x)
= β

}
.

Now take x ∈ K+
α ∩K−β ∩Z and ω ∈ ΣA such that π(ω) = x, with projections

ω+ = ρ+(ω) and ω− = ρ−(ω). It follows from item (6) in Lemma 5 that

lim
n→∞

cun(ω+)

dun(ω+)
= lim

n→∞

(cun ◦ ρ+)(ω)

(dun ◦ ρ+)(ω)

= lim
n→∞

(c+
n ◦ π)(ω)

(d+
n ◦ π)(ω)

= lim
n→∞

c+
n (x)

d+
n (x)

= α

and

lim
n→∞

csn(ω−)

dsn(ω−)
= lim

n→∞

(csn ◦ ρ−)(ω)

(dsn ◦ ρ−)(ω)

= lim
n→∞

(c−n ◦ π)(ω)

(d−n ◦ π)(ω)

= lim
n→∞

c−n (x)

d−n (x)
= β.

Hence, given ε > 0, there exists N2(ω) ∈ N such that

|cun(ω+)− αdun(ω+)| ≤ dun(ω+)ε ≤ nε(‖du1‖∞ + C1) (33)

and

|csm(ω−)− βdum(ω−)| ≤ dsm(ω−)ε ≤ mε(‖ds1‖∞ + C2) (34)
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for every n,m > N2(ω), where C1, C2 > 0 are the constants in the notion of
almost additivity. By (33), for n > N2(ω) we have

Un(ω+) ≥ −|q+| · |cun(ω+)− αdun(ω+)| −D+
n∑
k=0

(gu ◦ σk+)(ω+)

≥ −|q+|(‖du1‖∞ + C1)nε−D+
n∑
k=0

(gu ◦ σk+)(ω+).

Similarly, by (34), for m > N2(ω) we have

Sm(ω−) ≥ −|q−|(‖ds1‖∞ + C2)mε−D−
m∑
k=0

(gs ◦ σk−)(ω−).

On the other hand, since the measures µu and µs have the Gibbs property
and Pσ+(U) = Pσ−(S) = 0 (by Lemma 6), there exist constants C3, C4 > 0
such that

1

C3
≤

µu(C+
i0···in)

expUn(ω+)
≤ C3 and

1

C4
≤
µs(C−i−m···i0)

expSm(ω−)
≤ C4

for every ω = (· · · i−1i0i1 · · · ) ∈ ΣA and n,m ∈ N. For n,m > N2(ω) we
obtain

µu(C+
i0···in) ≥ 1

C3
exp

[
−|q+|(‖du1‖∞ + C1)nε−D+

n∑
k=0

(gu ◦ σk+)(ω+)

]
(35)

and

µs(C−i−m···i0) ≥ 1

C4
exp

[
−|q−|(‖ds1‖∞+C2)mε−D−

m∑
k=0

(gs◦σk−)(ω−)

]
. (36)

Lemma 8 implies that for any sufficiently small r = r(ω) > 0 we have

n(ω, r) > max{N1(ω), N2(ω)} and m(ω, r) > max{N1(ω), N2(ω)}.

Proceeding as in the proof of Lemma 4 in [4], we find that there exists ς > 0
(independent of r and x = π(ω)) such that

ν(B(x, ςr)) ≥ ν(π(Ci−m···in)) = µu(C+
i0···in)µs(C−i−m···i0)

with m = m(ω, r) and n = n(ω, r). By (26), (35) and (36), we obtain

ν(B(x, ςr)) ≥ rD
+
rD

−

C3C4
exp
[
−|q+|(‖du1‖∞ + C1)nε− |q−|(‖ds1‖∞ + C2)mε

]
(37)

for any sufficiently small r > 0. On the other hand, it follows from (28) and
(30) that

− n

log r
<

1

inf Iξu
− 2‖ψu‖∞

inf Iξu log r

and

− m

log r
<

1

inf I−ξs
− 2‖ψs‖∞

inf I−ξs log r
.
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Therefore, by (37) we obtain

log ν(B(x, ςr))

log r
≤ D+ +D− − log(C3C4)

log r

+ ε|q+|(‖du1‖∞ + C1)

(
1

inf Iξu
− 2‖ψu‖∞

inf Iξu log r

)
+ ε|q−|(‖ds1‖∞ + C2)

(
1

inf I−ξs
− 2‖ψs‖∞

inf I−ξs log r

)
for any sufficiently small r > 0. Since ε > 0 is arbitrary, we conclude that

lim sup
r→0

ν(B(x, r))

log r
≤ D+ +D−.

The desired result follows now readily from (20) and (32). �

6.6. Conclusion of the proof.

Proof of Theorem 4. For each α and β as in the statement of the theorem,
we constructed a measure ν on Z with ν(K+

α ∩ K−β ) = 1. By Lemmas 7

and 9, it follows for example from Theorem 2.1.5 in [2] that

dimH(K+
α ∩K−β ∩ Z) = dimH K

+
α + dimH K

−
β − dimH Λ− 1.

Since K+
α ∩K−β ⊂ Λ is locally diffeomorphic to (K+

α ∩K−β ∩ Z)× I, where

I ⊂ R is some open interval, we obtain

D(α, β) = dimH(K+
α ∩K−β ) = dimH K

+
α + dimH K

−
β − dimH Λ. (38)

Applying the identities in (14) and (15), we find that

D(α, β) = dimξu K
+
α + dim−ξs K

−
β + 1. (39)

Now consider the additive families ξ̄u = (ξu)t≥0 and ξ̄s = (−ξs)t≥0 given by

(ξu)t(x) =

∫ t

0
(ξu ◦ φq)(x) dq and (−ξs)t(x) =

∫ t

0
(−ξs ◦ φq)(x) dq.

By Theorem 3.5 in [5], any family of functions that is a linear combination
of a±, b±, ξ̄u and ξ̄s has a unique equilibrium measure. Hence, it follows
from Theorem 8 in [6] that

dimξu K
+
α = max

{
hµ(Φ)∫
Λ ξu dµ

: µ ∈MΦ and P+
Φ(µ) = α

}
and

dim−ξs K
−
β = max

{
hµ(Φ)∫

Λ−ξs dµ
: µ ∈MΦ and P−Φ(µ) = β

}
.

The first statement in the theorem follows now readily from (38) and (39).
To prove the second statement, note that by Theorem 8 in [6] we also have

dimξu K
+
α = min

{
Sξu(α, q) : q ∈ R

}
,

where Sξu(α, q) is the unique real number such that

PΦ

(
q(a+ − αb+)− Sξu(α, q)ξ̄u

)
= 0.

By Proposition 5 in [6], the function

(q, α, p) 7→ PΦ

(
q(a+ − αb+)− pξ̄u

)
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is of class C1. Hence, applying the implicit function theorem, we find that
(α, q) 7→ Sξu(α, q) is also of class C1, which implies that the map

intP+
Φ(MΦ) 3 α 7→ dimξu K

+
α

is continuous. One can show in a similar manner that the map

intP−Φ(MΦ) 3 β 7→ dim−ξs K
−
β

is continuous, which completes the proof of the theorem. �
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