DIMENSION SPECTRA FOR FLOWS: FUTURE AND PAST

LUIS BARREIRA AND CARLLOS HOLANDA

ABSTRACT. We establish a conditional variational principle for the di-
mension spectrum obtained from almost additive families for a flow on a
conformal locally maximal hyperbolic set, simultaneously into the future
and into the past.

1. INTRODUCTION

Our main aim is to establish a variational principle for the Hausdorff di-
mension spectrum obtained from almost additive families for a flow. More
precisely, the spectrum is obtained computing the Hausdorff dimension of
the level sets obtained from the averages (when they exist) of almost additive
families into the past and into the future, on a conformal locally maximal
hyperbolic set. We note that the conditional variational principle for the
dimension spectrum cannot be obtained from separate results into the fu-
ture and into the past, at least without further modifications. Instead, we
construct noninvariant measures concentrated on each level with the ap-
propriate pointwise dimension that then allow us to obtain the conditional
variational principle.

We describe briefly the context of our work. The topological pressure P(¢)
of a continuous function ¢ with respect to a dynamical system f: X — X
was introduced by Ruelle in [14] for expansive maps and by Walters in [16]
in the general case. Its variational principle says that

Po) =sw () + [ odn).
" X

where the supremum is taken over all f-invariant probability measures u
on X and where h,(f) is the Kolmogorov-Sinai entropy of f with respect
to u. We refer the reader to the books [8, 10, 11, 15] for details and further
references. The nonadditive thermodynamic formalism was introduced es-
sentially replacing the topological pressure P(¢) of a single function ¢ by the
topological pressure P(®) of a sequence of continuous functions ® = (¢, )nen
(see [1]). Besides playing a unifying role, the nonadditive thermodynamic
formalism has nontrivial applications to the dimension theory and multi-
fractal analysis of dynamical systems. With the same spirit in mind, in [5]
we considered a version of the nonadditive topological pressure for almost
additive families with respect to a flow.
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A family a* = (a;);>0 is said to be almost additive (into the future) with
respect to a flow ® = (¢;)ser if there exists a constant C' > 0 such that

—C<af,—af —afop <C (1)

for every t,s > 0. We showed in [5] that if a™ is an almost additive family
of continuous functions with tempered variation (see Section 2.1) such that

sup |la; ||o < 00 for some s > 0,
te(0,s]

then

Py(a™) = sup (h“(i)) + lim ! a d,u,) , (2)

1Mo t—oo t X
where Mg is the set of all ®-invariant probability measures on X. We say
that a ®-invariant measure p on X is an equilibrium measure for a™ (with
respect to @) if the supremum in (2) is attained at u, that is, if
1
Pg(a™) = hu(®) + tliglo . a; dp.

We also showed that if A is a hyperbolic set for a topologically mixing
C! flow ® and the family a* has bounded variation (see Section 4 for the
definition), then there exists a unique equilibrium measure for a™.

In this work we establish a conditional variational principle for the Haus-
dorff dimension spectrum obtained from almost additive families for a flow
on a conformal locally maximal hyperbolic set. Moreover, we consider si-
multaneously the behaviors into the future and into the past. For simplicity
of the exposition, here we formulate only a particular case.

Let at = (af )i>0 be a family of continuous functions on a hyperbolic
set A that is almost additive into the future (see (1)). Let also a™ = (a; )¢>0
be an almost additive sequence of continuous functions on A that is almost
additive into the past, that is, there exists a constant C' > 0 such that

—-C<ay,,—a; —ago¢p ¢ <C
for every t,s > 0. Given «, 8 € R, we consider the sets
+
a; (x
K;_:{.%EA: lim t():a}
t—00 t

and

Kﬁ_:{xeA: limai@zﬁ}.

t—00

Our main result is a variational principle for the dimension spectrum
D(a, B) = dimy (K} N Kg).
We also consider the maps P*: Mg — R defined by
1 1
+ o . - + — — . - —
P () = lim /Aat dp, P (p) = lim - o dp,

as well as the functions

(o) — tim B0 E@)]

where E*(z) and E"(x) are the stable and unstable spaces at x.

6 (0) — lim B0 )]

t—0 t t—0 t

9
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Theorem 1. Let ® be a C'¢ flow with a locally mazimal hyperbolic set A
such that ® is conformal and topologically mixing on A. Then:

(1) if a € int PT*(Mg) and B € int P~ (Mg), then

D(a, B) = max{fh’é((};l)u € Mg and PH(p) = a}
ASu
+max{_}i<§:)du c € Mg and P~ (p) :6} +1;

(2) D is continuous on int Pt (Mg) x int P~ (Mgp).

A corresponding result for discrete time was obtained earlier in [4] for
almost additive sequences, on a conformal locally maximal hyperbolic set
for a diffeomorphism. To the possible extent we follow their approach by
using Markov systems for the hyperbolic set and the associated symbolic
dynamics along the stable and unstable invariant manifolds.

2. THERMODYNAMIC FORMALISM

2.1. Topological pressure. Let ® = (¢;);cr be a continuous flow on a

compact metric space (X,d). Moreover, let a = (at)i>0 be a family of
continuous functions a;: X — R with tempered variation, that is, such that
— (a,e
lim T 24%8) ¢ (3)
e—0t—o00 t
where

Yi(a,e) = sup{|as(y) — a¢(2)| : y € By(w,¢) for some z € X }
and
Bi(z,e) = {y € X : d(¢s(y), ¢s(x)) < € for s € [0,1]}.
Given € > 0, we say that I' C X x RE{ covers a set Z C X if
U Biuz,e)>2
(z,t)el
and we write
a(z,t,e) =sup{as(y) : y € Be(z,e)}

for (z,t) € I'. For each Z C X and o € R, let

M(Z a,a,e) = lim inf exp(a(x,t,e) — at),

(@)= s g 35 plalot,e) =)

with the infimum taken over all countable sets I' C X x [T, +00) covering Z.
When « goes from —oo to +00, the map a — M(Z, a, o, ¢) jumps from +oo
to 0 at a unique value and so one can define

Pg(alz,¢e) = inf{a eR:M(Z,a,a,¢e) = 0},

Moreover, the limit
Pq;(a‘z) = lim P@(a|z, 6)
e—0

exists and is called the topological pressure of the family a on the set Z. For
simplicity of the notation, we shall also write Pg(a|x) = Ps(a).
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The classical notion of topological pressure for a flow corresponds to con-
sider a family of continuous functions a = (at);>0 defined by

ar(z) = /0 b(a () ds

for some continuous function b: X — R. One can easily verify that (3) holds
for this family and we write P(b) = Pg(a).

2.2. u-dimension for flows. Given a continuous function u: X — R™, we
consider the family of continuous functions @ = (u¢)¢>0 defined by

t
w(a) = [ u(on(a)) ds
0

for every x € X and ¢t > 0. For each Z C X and a € R, let

N _ 1 : —au(z,t,e)

(Z,u,a,¢) T]grgo Hllf Z e ,
(z,t)el

with the infimum taken over all countable sets I' C X x [T, +00) covering Z.
Finally, let

dim,. Z = inf{a € R: N(Z,u,a,e) = 0}.
The limit

dim,, 7 := lim dim,, . Z
e—0

exists and is called the u-dimension of the set Z (with respect to the flow ®).
One can easily verify that dim, Z = «, where « is the unique root of the
equation Py(—au|z) = 0.

3. FLOWS AND HYPERBOLICITY

3.1. Hyperbolic sets. Let ® = (¢;)icr be a C! flow on a smooth mani-
fold M with distance d. A compact P-invariant set A C M is said to be a
hyperbolic set for ® if there exist a splitting
TAM =E*® E" @ E®
and constants ¢ > 0 and A € (0,1) such that for each x € A:
(1) the vector (d/dt)ds(x)|i—o generates E®(z);
(2) for each t € R we have
dor E°(x) = E*(dr(x))  and - dedp B (z) = E*(¢(x));
(3)
|l detiv|| < cAt|jv||  for v € E*(x), t > 0;
(4)
|dep—_sv| < eXf|v|| for v € E%(x), t > 0.
Given a hyperbolic set A and ¢ > 0, for each x € A let V*(z) and V*(x) be,
respectively, the connected components of the sets
A%(z) = {y € B(z,e) : d(¢4(y), d¢(x)) — 0 when t — +o00}

and

A*(z) = {y € B(z,e) : d(¢¢(y), d+(x)) — 0 when t — —o0}
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containing x. The sets V*(x) and V¥(z) are called, respectively, stable and
unstable local manifolds at x (of size £). We have the following properties:

(1) T,V*(z) = E*(z) and T, V% (z) = E"(x);
(2) for each t > 0 we have

oe(V*(z)) C V3 (de(x)) and ¢ (V*(x)) C V*(¢—i(2));
(3) there exist d > 0 and p € (0,1) such that
d(de(y), u(x)) < dp'd(y,z) fort >0, y € V() (4)
and
d(p—1(y), () < dp'd(y,z) fort >0, y e V¥(x).

Given a locally maximal hyperbolic set A (that is, a hyperbolic set A such
that A = (,cg ¢:(U) for some open neighborhood U of A) and a sufficiently
small 7 > 0, there exists § > 0 such that if z,y € A are at a distance
d(xz,y) < 9, then there exists a unique t = t(z,y) € [—7, 7] such that

[z, y] ==V (d(x)) N V*(y)

is a single point of A.

3.2. Conformal flows. We say that a C' flow ® is conformal on a hy-
perbolic set A if there exist continuous functions P, P*: A x R — R such
that

dypt|E° () = P*(x,t)I°(z,t) and dy¢¢|E¥(x) = PY(x,t)I%(x,t)
for every x € A and ¢t € R, where
IP(z,t): E*(2z) = E°(¢r(x)) and  I"(z,t): E"(z) = E(¢(x))
are isometries. For example, if
dim E¥(z) = dim E%(x) =1 for x € A,

then the flow is conformal on A. Following [12] we define:

Es(x) == g log | P*(z,t)]i=0

ot

0
= £ 1og el B*() =0 o)
o og e B @)

t—0 t

and

0
&u(x) = g log |P*(x,t)|t=0

0

0

= = log |[du 64l B (@) li=o (6)
o log gl B (@) |

t—0 t
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Since the flow ® is of class C'', using 2-norms one can write
log et B @) _ . Tog(ldenl B (@)

11t1—>0 t t—0 2t
o B ), B B @)
t=0 |dzpe| B ()|

~ (B @), S (@B )mo )

and, similarly,

| og [ ()]
t—0 t

0

= (1B (@), S (Ll B )

In particular, the functions & and &, are well defined. Furthermore:

(1) Since the maps = — E*(z) and x — E"(x) are Holder continuous,
the functions & and &, are also Holder continuous.

(2) For an adapted norm ||| (that is, a norm for which one can take
¢ =1 in the definition of a hyperbolic set), we obtain

1 de 0| B
o) i DEIEGE@I
t—0t+ t
and
I dpdi | EY
€4(z) = lim og ||dxdt| B ()| > logA > 0
t—0+ t
for all x € A.

(3) For every z € A and ¢ € R, it follows from (5) and (6) that

sl = oo | 6 (n(2)) i) forveB)

and
ldzpev| = ||| eXP(/O §u(¢r(ﬂf))d7> for v € E*(x). (7)

4. ALMOST ADDITIVE FAMILIES

In this section we introduce the general context of our work: the study of
level sets associated with almost additive families of continuous functions.
Let ® = (¢¢)tcr be a continuous flow on a compact metric space (X, d).

A family a = (at)i>0 of continuous functions a;: A — R is said to be
almost additive into the future if there exists a constant C; > 0 such that

—C1 < apys(7) — ar(z) — as(¢e()) < G

for every x € A and ¢, s > 0. Analogously, a family a = (at)+>0 is said to be
almost additive into the past if there exists a constant Cs > 0 such that

—C < apgs(z) — ar(z) — as(p-4(2)) < Oy

for every x € A and ¢,s > 0. We recall that a family a = (a:)i>0 is said to
have bounded variation (with respect to the flow ®) if for every x > 0 there
exists € > 0 such that

las(z) — at(y)| < k whenever y € By(x,¢).
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We denote by AT the set of all families a = (at);>0 of continuous functions
at: A — R with bounded variation with respect to the flow ® that are almost
additive into the future and satisfy

sup ||a¢l|eo < 400 for some s > 0. (8)
t€[0,s]

Similarly, we denote by A~ the set of all families @ = (a¢)¢>0 of continu-
ous functions a;: A — R with bounded variation with respect to the flow
(¢—t)ter that are almost additive into the past and satisfy

sup |lat|lec < +00  for some s > 0.
te[—s,0]

Now consider pairs (a™,b") € AT x AT and (a™,b") € A~ x A~ such that

b:t
liminf 2@ < 0 and bE(2) > 0 9)
t—00 t
for every x € A and t > 0. Given «, 8 € R, we consider the level sets
; (z)
Kf={zeA:lim L = } 10
f=frensmiEey o e
and
-~ T GO
K —{xEA.tlgélo b (2) —,8}. (11)

We also consider the sets K N K that consider simultaneously the asymp-
totic behaviors into the future and into the past.

It was shown in [6] that if a is an almost additive family of continuous func-
tions (into the future) with tempered variation such that sup;cpo ) [lat/leo <
oo for some s > 0, then we have the variational principle

1
Pg(a) = sup <h (®)+ lim — [ ay du) , (12)
HEMg H t—oo t A
where Mg is the set of all ®¢-invariant probability measures on A and where
hy(®) is the Kolmogorov—Sinai entropy of 1. We say that a measure u € Mg
is an equilibrium measure for the almost additive family a (with respect to

the flow @) if the supremum in (12) is attained at p, that is, if

1
Py(a) = hy(®) + lim T dy.

t—o00 A

5. DIMENSIONS ALONG THE STABLE AND UNSTABLE DIRECTIONS

In this section we obtain formulas for the Hausdorff dimensions of the
level sets K and K in (10) and (11) in terms of the topological pressure.

Before proceeding we recall a result of Pesin and Sadovskaya in [12] on
the Hausdorff dimensions of a hyperbolic set along the stable and unstable
local manifolds. We denote by dimy S, dimpS and dim S, respectively, the
Hausdorff dimension, the lower box dimension and the upper box dimension
of a set S.
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Proposition 2 ([12, Theorem 4.1]). Let ® be a C'** flow with a locally
mazximal hyperbolic set A such that ® is conformal and topologically mizing
on A. For every x € A we have

dimg(ANV*(x)) = dimg(ANV*(2)) = dimg(ANV3(x)) = t,
and
dimg (AN V*(x)) = dimg(ANV*(x)) = dimg(A N V% (z)) = t,,
where ts and t, are the unique real numbers such that
P(ts€s) =0 and P(—ty&u) = 0.
The following result describes the Hausdorff dimensions of the level sets
K1 and K7 in terms of the topological pressure.
a B
Theorem 3. Let ® be a C'*¢ flow with a locally mazimal hyperbolic set A
such that ® is conformal and topologically mixing on A and take pairs
(at,b") e AT x AT and (a7,b7) €A x A
satisfying (9). For each (o, ) € R?, 2t € K} and v~ € K, we have:

(1)
ANVE@Y)C KS and ANVY(x7)C Kg; (13)

(2)
dimy K = dimg (K nV*(2™)) +ts+ 1 14)
= dime, K +t5+1

and
dimg K/g = dlmH(K/g N Vs(x_)) +t,+1

: - (15)
=dim_¢, K5 +t, + 1.

Proof. Since the families a* and b+ have bounded variation, given x > 0,
there exists € > 0 such that

laf (y) —af (2)] <k and |6 (y) — b (2)| < &

for y,2z € Bi(z",e). Now take y,z € V*(at). Provided that y and z are
sufficiently close, it follows from (4) that y, 2 € By(x*, ). We have

a (y) ol ()| _|af () af(x) & (2) af(2)
by bR b)) b ) b(2)
las (y) — a/" ()] 1 1
e IR TG
_ o (y) — af (2)] lat(2)] - b () — b/ (2)]
b (y) b Wb (2)
Since a™ is almost additive, by (8) there exists K > 0 such that
laf (y)| < K(1+t) forally €A, t>0.
Moreover, by (9), there exists C' > 0 such that

b (y)|| > Ct forally €A, t>0.
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Therefore,
+ +
a; (y)  af (2) K K
— < —4+ KA+t ——=
) b S TR g
and so
o b y) b )] T
Y t

Now we cover a compact neighborhood of ™ in V¥(z™) with sufficiently
small balls By, := B(y,r)NV*(z ") such that property (16) holds for z € B,,.
Taking a finite subcover, it follows readily from (16) that
+ + (ot
o) )
=00 b (y) 190 by ()
for all y in the compact neighborhood of z* in V*¥(z™). In other words,
ANVE(xt)c K for every 27 € K.

One can establish the second inclusion in (13) in a similar manner.
Since the set K is ®-invariant (see [6]), we have

AnlJe(Ve(at)) c K.
teR

On the other hand, since ®|A is conformal, it follows from results in [9] that
the maps

i E(z)® E*(z) and z— E%(z) ® E®(x)

are Lipschitz. This implies that on a sufficiently small open neighborhood of
a point T € K, there exists a Lipschitz map with Lipschitz inverse from
K onto the product

(AN V(™)) x (Ky NV (™)),
where
Vit(a™) = [ (Vo))
tel
for some open interval I C R containing zero. Therefore,

dimy K = dimg [(ANVH(=T)) x (K nv*(=™))].
By Proposition 2, we have
dimg (AN VH(x™)) = dimp(ANVH(z)) = ts + 1. (17)
Since
dimy S1 + dimgy Sy < dimg(S1 x So) < dimpS; + dimy So
for any sets S1, 52 C R", it follows from (17) that
dimy K} = dimy (K NnV*(x")) +ts + 1,

which is the first equality in (14). The first equality in (15) can be obtained
in a similar manner.
Now we establish the second equality in (14). Let

Eulz,tye) = sup{at(y) TRS Bt(m,a)},



10 LUIS BARREIRA AND CARLLOS HOLANDA

where
(o) = [ Eulonta) s

Since the function &, is Holder continuous, it follows from (7) that given
€ > 0, there exist constants ki, ko > 0 such that

kpeu(@te) < [diam (By(z,€) N V"(ach))]7 < kgeEu(@te)
for every x € A, t > 0 and v > 0. This readily implies that
dimg, S = dimpy (SN V¥ a™))
for any set S C A. In particular, taking S = K we obtain
dimp (Kl NV*(a™)) = dimg, K.

One can obtain in a similar manner a corresponding result for Kg. (]

6. CONDITIONAL VARIATIONAL PRINCIPLE

6.1. Formulation of the result. In this section we obtain a conditional
variational principle for the dimension spectrum

D(a, f) = dimp (KJ N Kj)

obtained from families of continuous functions (a*, b*) € A* x A*. We also
consider the functions ’Péﬁ: Mg — R defined by

 Jyaf d I
P () = lim AU g By () = tim AT
fAbt dp fAbt dp

where Mg is the set of all ®-invariant probability measures on A. The
following theorem is the main result of this section.

Theorem 4. Let ® be a C'*¢ flow with a locally mazimal hyperbolic set A
such that ® is conformal and topologically mizing on A and take pairs

(a™,b7) e AT x AT and (a",b7) €A x A

satisfying (9). Then the following properties hold:
(1) if a € int P (Mo) and B € int Py (Me), then

D(a, f) = dimpy K + dimy Kz — dimy A

= max{fi‘%(uq)d)lu € Mg and Ph(u) = a}
+max{m t € Mo and Py (1) = B} +1;

(2) D is continuous on int PF(Me) x int Py (Me).
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6.2. Markov systems. For the proof of Theorem 4 we need the notion of
a Markov system and its associated symbolic dynamics. Let D C M be an
open smooth disk of dimension dim M — 1 transverse to the flow ® and take
x € D. Let U(z) be an open neighborhood of x diffeomorphic to D x (—¢, ).
A closed set R C AN D is called a rectangle if

R=intR and mp([z,y]) € R for z,y € R.

Now consider rectangles Ry,..., Ry C A such that

RiﬂRj :8R1~08Rj for i # j
and let Z = Ule R;. We assume that A = J;c(o ) ¢¢(Z) and that either

o(R;) N R; = (0 forallte [0, ]
or

¢t(Rj) NR;, = @ forallte [0, 8]
when i # j. We define the corresponding transfer function 7: A — Ra’ by

7(z) = min{t > 0: ¢(z) € Z}
and the transfer map T: A — Z by T(z) = ¢r(z)(x). The restriction T of
T to Z is invertible and we have T"(x) = ¢, (;)(z), where

n—1 _
() = ) 7(T"(x)).
i=0
The collection Ry, ..., Ry is called a Markov system for ® on A if
T(int(V?(z) N R;)) C int(V*(T'(x)) N Ry)
and
T Hint(V¥(T(z)) N R;)) C int(V*(z) N R;)
for every x € intT(R;) Nint R; and 4,5 = 1,...,k. By work of Bowen [7]
and Ratner [13], any locally maximal hyperbolic set A has Markov systems
of arbitrarily small diameter.
Given a Markov system Rq,..., Ry for a flow ® on a locally maximal

hyperbolic set A, we consider the k x k matrix A with entries

Lot if intT(R;) N R; #0,
10 otherwise.

We also consider the set
YA = {(---ifliol’l"') S {1,...,k}Z D Qg = 1forn e Z}

and the shift map o: ¥4 — X4 defined by o(---ig--) = (---jo---), where
Jn = in+1 for each n € Z. Finally, we define a coding map 7w: ¥4 — Z by

m(-evigeer) = m Ri_. .,

neL

where R; ..., =(\o_, T, Yint R;,. Then the following properties hold:
(1) roo=Tom;
(2) m is Holder continuous on each domain of continuity and is onto;
(3) 7 is one-to-one on a full measure set with respect to any ergodic
measure of full support and on a residual set.
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In addition, we consider the sets
EX = {(ioil"') (--vi_qigiy---) € EA}
and
Y= {( cei_qdg) : (- iqdgiy ) € ZA}.
The shift maps o : E:{ — Zj and o_: ¥ — X7, are defined by
o (Jojrjz ) = (fijz--+) and o_(-jaj-1jo) = (-+j-2j-1)

We describe briefly the relation of the symbolic dynamics to the stable
and unstable manifolds. Given x € Z, take w € ¥4 such that n(w) = =
and let R(z) be the rectangle of the Markov system containing z. For each
w € ¥4, we have

m(w) € V¥(x) N R(z) whenever pi(w) = py(w)
and
m(w) € V¥(x) N R(z) whenever p_ (@) = p_(w),

where py: X4 — Zj and p_: ¥4 — X are the projections given by

p+(w) = (igir---) and p_(w) = (---i-1io)

for w = (--+i_qigi1---) € X4. The set V¥ (x) N R(x) is identified with the
cylinder

Cio ={Goji--) € 4 : jo =0},
and the set V*(x) N R(x) is identified with the cylinder

—{ -j—1jo) € X4 : jo =0}

6.3. Equilibrium measures. Now let v be a T-invariant probability mea-
sure on Z. One can verify that v induces a ®-invariant probability measure p
on A such that

_ fZ fo( (goops)(x)dsdv
/Agdu— fZTdy (18)

for any continuous function g: A — R. Moreover, any ®-invariant prob-
ability measure p on A is of this form for some Tz-invariant probability
measure v on Z. Abramov’s entropy formula says that
hy(Tz)
JyTdv

hyu(®) = (19)

y (18) and (19) we have
h,,(Tz) +fZIg dv
Sy Tdv ’

hu(®) + / gdp =
A
where

7(x)
Iy(x) = /0 (90 ¢)(z) ds
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6.4. Construction of auxiliary measures. Given pairs of families of con-
tinuous functions (a*, o) € AT x AT satisfying (9), we define sequences c*
and d* by
+ + + +
¢, (x) = aTn(m)(a:) and d; (z) = b2 () ()

for every x € Z and n € N. By Lemmas 8 and 10 in [5], the sequences ¢*

and d* are almost additive and have bounded variation with respect to T
and T, ! respectively. Moreover, we have
dt(z
lim inf = (z)
n—o00 n

>0 and df(z)>0

for every x € Z and n € N. The following result is a simple adaptation of
Lemma 1 in [4] for the map T.

Lemma 5. There exist sequences c* and d“ composed of continuous func-
tions ct, d%: Ej — R and numbers 1,72 > 0 such that

mn»'n

(1) for everyn € N and w € ¥4 we have

len (T(w)) = cplp(@)] <m
and
|dyy (m(w)) = diy (p+ (w))] < 725
(2) " and d* are almost additive sequences and have bounded variation
with respect to o4 ;
(3) ctom, ctopy, dtom and d¥ o py are almost additive sequences and
have bounded variation with respect to o;
(4) Pr,(c") = Po ("), Py(c™ om) = Py(c" 0 py), Pr,(d*) = Po,(d")
and P,(d* om) = Py(d" o py);
(5) ¢ om and ¢ o py have the same equilibrium measures and d* o
and d“ o p1 have the same equilibrium measures;
(6) the limit
L (e om(w)
=0 (dif o 7)(w)
exists if and only if the limit
(o))
wbe (@t o o) (@)
exists, in which case they are equal.

Similarly, there also exist sequences ¢® and d® of continuous functions
c¢s,ds: ¥ — R satisfying the statement in Lemma 5 with ¢*, d*, p4, oy
and Tz replaced, respectively, by ¢™, d™, p—, o_ and T, L

Given gt € R, we consider the almost additive sequences U on EX and

S on X, defined by
n—1
U=q"(c*—ad")— DT Z(g“ ock)
k=0

and
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where

D" =dimy Ky —t;—1 and D~ =dimgK; —t,—1,  (20)
and where

g“:Th =R and ¢*: ¥, >R

are Holder continuous functions such that ¢* o p4 and ¢g® o p_ are cohomol-
ogous, respectively, to I¢, om and I_¢ om. We note that U has bounded
variation with respect to o4 and that S has bounded variation with re-
spect to o_. Since the maps Tz and T, Lare topologically mixing, it follows
from Theorem 12 in [1] that U has a unique equilibrium measure y* on ¥
(with respect to o) and that S has a unique equilibrium measure * on ¥,
(with respect to o_). Denoting by My, the set of all Tz-invariant (and

thus also T, 1—invau"iauat) probability measures on Z, we consider the maps
P71, : Mz, — R defined by

Td —d
P (1) == lim fzcij_u and P; (p) := lim fz Cn O
Z n—o00 den du z n—00 de d'u
Lemma 6. For each o and B as in Theorem 4, there exist ¢7,q~ € R with
P, (U)y=PF,_(S)=0

o4+
such that the measures u* and u® satisfy

1 1
lim / ey dpt =a lim — dydu”
2-0—

n—oo n n—oo N [yt
A

and . .
lim / ¢, dp® = g lim / dy du’.
n—oo n D n—oo n S

Proof. Since &, is Holder continuous, the additive family of continuous func-
tions &, = ((&u)t)r>0 defined by

- /O 6 (6ula) ds

has bounded variation and satisfies condition (8). Therefore, by Theorem 3.5
in [5], each linear combination of the families a®, b and &, has a unique
equilibrium measure. This allows us to apply Theorem 8 in [6] to conclude
that for each o € int ‘J’$(Mq>) there exists an ergodic measure u, € Mg such

that
f A dﬂa

t—>oo fA b dIu,a
Moreover, by Lemma 3.4 in [5] we have

1
lim — [ a; dua—hm/c dVa//TdV
t—oo t o n—00 M
where v, is the Tz-invariant measure on Z that induces the measure pq
on A as in (18), and so

a="7g o (o) = li

T dpa T dv,
ani H — lim fZCZ v — pt ( )
t—00 fAbt dtg, n—00 den dvg,
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Therefore, a € int Py, (Mr,). By Lemma 5, for each v € My, we have

¢ omdm
PY (v) = lim SZaCnOTm
z n—00 fEA dﬁ omdm

p JsaGoprdm Jst cdn

= lim —=———— = lim 44—

n—00 fEA déopidm n—oo fzz d¥ dn’

where m = vomwand n =mo p:Ll. Therefore, denoting by M, the set of
all oy-invariant probability measures on Zj and letting

fzj Cpdn fz— cp dn

Py (n) = lim and P ()= lim -4

n—oo [, st dn d1]
we conclude that o € int P, (Mo, ). Hence, it follows from Theorem 3 in (3]
that there exists ¢t (a) € R such that

P, (U)=0 and P (u") =

e

One can show in a similar manner that there exists ¢~ () € R such that
P, (S§)=0 and P, (¢°)=p0.

This completes the proof of the lemma. O

6.5. Estimates for the pointwise dimension. Recall that Z = Ule R;.
We denote by R(z) the rectangle of the Markov system that contains x.
Taking ¢* and ¢~ as in Lemma 6 (notice that u* depends on ¢* and that
u® depends on ¢~ ), we define measures v* and v* on R(zx) by

Voand v =pfop_omh

vt=p"oprom
We also define a measure v on R(x) by v = v* x v*. Since the measures
' and p® have the Gibbs property (see for example Theorem 11 in [5]), for

x = m(w) with w = (---ip---) we have
V(R(z)) = u"(C)*(C5) > 0.

10
Lemma 7. For v-almost every x € Z, we have
log v(B(z,r))

lim inf > dimpg K +dimg Kz —dimg A — 1.
7—0 log r
Proof. Tt follows from Lemma 6 and Birkhoff’s ergodic theorem that
0=P,, (U)
.1 u

n—1
1 1
= hyu(og) —D+/ lim —Z(g“oai) dp"

n EJAF n—oo N =0
= hyu(oy) — D+/ g"dp*.
4
Similarly, we also obtain

0=PFP, (S)=hys(c-)— D" / g°du’.

A
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This implies that

By By (o
D+ = % and D~ = M (21)
Jx g% dp Js- 9% du

By the Shannon—McMillan—Breiman theorem, we have

— : 1 u + u

hyw (o) = /Z+ Jim ——log u*(Ch., ) dp* (w4 ),
: : (22)

_ : _ S - . S

hys(o-) = /EA n}gnoo mlogu (Ci_ i) dp’ (w-).

Moreover, since pu* and p® are ergodic measures, it follows from Birkhoff’s

ergodic theorem that

n

. 1 u k _ u u
Jg&ogz(g ool )(wy) —/E+9 dp”,
k‘zo A (23)
1
lim — g* o) (w_ :/ g° du’®
Jim 5 2 lg" o) = [

for p*-almost every wy € EZ and p-almost every w_ € ¥

By (21) together with (22) and (23), given € > 0, for p“-almost every
pr(w) = wy € C’% and p’-almost every p_(w) = w— € C;, there exists
Ni(w) € N such that

log p(C;F
Dt —e < — nogu ( lO}C"Z”) < D" +e,
> k—o(g" 0 o) (wy)
log u*(C;~ ) (24)
0g i -
D™ —e< — m,u T < DT e
> ko9t 0 0t)(w-)
for all n,m > Nj(w). On the other hand, since inf 7 > 0, we have
(m(w))
T (w(e)) = [ (600 d0)(n(w) du > inf (= log) >
(25)

7(m(w))
Fe(r@) = [ (=60 6,) () da > infr(=log ) > 0

for allw € ¥ 4. Since g*op is cohomologous to I¢, om and g®op_ is cohomol-
ogous to I_¢ o, there exist bounded measurable functions ¢*,9%: ¥4 — R
such that

gtopr —Ig, om =19 ooy — "
and

Gop.—I¢om=14 oo —1’.
Since ¥® and 9" are bounded, it follows from (25) that for any sufficiently
small 7 > 0 there exist unique integers n = n(w,r) and m = m(w, r) with

n n+1
Z(g“ o) (wy) < —logr < Z(g“ o gl )(ws),
k=0 k=0
~ - (26)

D (g° 00" )(w-) < —logr <> (g"o0ah)(w).

k=0 k=0



DIMENSION SPECTRA FOR FLOWS: FUTURE AND PAST 17

Moreover, we have the following result.
Lemma 8. r — 0 if and only if n(w,r), m(w,r) — co.

Proof of the lemma. Tt follows from (26) that
n+1

—logr < (g"ook)(wy)
k=0
n+1 (27)
=3 (e, o ) (0" (@) + (072 (w)) — 1" ()
k=0

< (n+2)|lg, [loo + 2[[9"[loc

and

“logr > Y (9" 0 %) (wy)
k=0

n . Y (28)
=Y (g, om)(0* (W) + 9o (w)) = ¥ (w)
k=0
> (n+1)inf I, — 2||¢"||s.
Analogously, we also have
—logr < (m + 2)|[1¢,lloc + 2[[1"[|oc (29)
and
—logr > (m+1)inf I_¢, — 2||¢°|| . (30)
It follows readily from (25) together with (27), (28), (29) and (30) that » — 0
if and only if n(w,r), m(w,r) — oo. O

Proceeding as in the proof of Lemma 3 in [4], we find that given ¢ > 0,
there exist ¢ > 1 (independent of r and z = 7(w)) and § = d(x,e,0) > 0
such that

for r < 6 and for v-almost every x € Z. By Lemma 8 together with (24)
and (26), we obtain

v(B(x,r)) < exp(logr+ [lg" o) (D —) + (log 7+ [|g° | oc)(D™ —e)] <g>

and taking r < 1 sufficiently small yields the inequality

log r - log r
4 19°le(D” —€) | clogo
log r log r

Finally, since € > 0 is arbitrary, we conclude that

lim inf logv(B(z,r)) v(B(z,7))

> DVt + D~ (31)
r—0 logr
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for v-almost every x € Z. On the other hand, by Theorem 4.2 in [12] we have
dimg A =t,+ts+1 (32)

and it follows from (20) and (31) that
lim inf logv(B(z,r)) v(B(z,r))

. Jr . —
m ix o > dimy K —i—dlmHKﬁ —(ty +ts+1)—1

= dimg K;r + dimg K[; —dimg A — 1.
This completes the proof of the lemma. O

Lemma 9. For each x € KI N Ky NZ, we have

T logv(B(x,r))

< dimy K} +dimy K} — dimg A — 1.
r—0 10g7‘ A

Proof. By Lemma 12 in [6], we have

+ 4+ + 4
lim sup ai (@) = lim sup C’i(x) and liminf ati (z) = lim inf cl(x)
t—o0 bt (l’) n—oo dp (:L') t—o0 bt (g;) n—oo  dr (33)

for every x € Z. Therefore,

+ —
K;rﬁKﬂ_ﬂZ:{er: lim i(xg =« and lim o () :ﬁ}
t

t—oo b (SC t—00 b;("]j)
= {x €Z: nh_}ngo CCZ;ZZ; = « and nh_}ngo CCZ;E ; = ﬁ}

Now take x € KINK5NZ and w € ¥4 such that 7(w) = 2, with projections
wy = p4(w) and w_ = p_(w). It follows from item (6) in Lemma 5 that

hws) _ o (Gop)w)
n—00 d%(u)_y) naoo (du ° p+)(w)

o e om®)

n—00 ( )(w)

R
and

ey (w-) — lim (ch 0 p-)(w)
n—oo df (w_)  n—oo (df o p_)(w)

i (G oM)

n—00 (d; o 7T)(CU)

i a0

Hence, given ¢ > 0, there exists Na(w) € N such that
[en (@) = ady(wy)] < dp(w)e < ne((|dif|oo + C1) (33)

and
ey (w=) = By, (w-)| < dy (w-)e < me([|d][|oc + C2) (34)
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for every n,m > Na(w), where C,Cy > 0 are the constants in the notion of
almost additivity. By (33), for n > Ny(w) we have

Un(ws) = —=la*] - |epi(ws) — ady(ws)| = DT Y (9" 0 o) (ws)
k=0

~la*|(Id}lloo + C1)ne = DF Y (g" 0 o) (wy).
k=0

Y

Similarly, by (34), for m > Na(w) we have

m
Sm(w-) = =l |([|d [l + C2)me — D7) (g* 0 0% ) (w-).
k=0
On the other hand, since the measures p* and p® have the Gibbs property
and P, (U) = P,_(S) =0 (by Lemma 6), there exist constants C3,Cy > 0
such that

— < < d <
Cs = expUp(wy) — Cs an Cy ~ expSp(w-) — Ca
w

for every w = (-+-i_1ipi1---) € ¥4 and n,m € N. For n,m > Na(w) we

obtain

1 n
HCh) 2 e [—|q+|<||d%||oo  Cine— DF Y (g oai:><w+>} (35)
k=0

and

(O ) 2 050 A e Come =D 3 (57004 o) 36

Lemma 8 implies that for any sufficiently small r» = r(w) > 0 we have
n(w,r) > max{N;(w), N2(w)} and m(w,r) > max{N;(w), Na(w)}.

Proceeding as in the proof of Lemma 4 in [4], we find that there exists ¢ > 0
(independent of r and x = 7(w)) such that

v(B(x,sr)) 2 v((Ci_yeuin) = 1(Cil i I (C i)
with m = m(w,r) and n = n(w,r). By (26), (35) and (36), we obtain

Dt D~
rZr _
v(B(w,er) 2 =55 exp[—lg*|([|d} oo + C1)ne — |~ |(ldi]loo + C2)me]
(37)
for any sufficiently small » > 0. On the other hand, it follows from (28) and

(30) that
n 1 2||%"|loo

“logr  inf I, inf ¢ logr

and
m 1 2|%°|| oo

logr Y I_¢ infl ¢ logr’
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Therefore, by (37) we obtain

logv(B(z,57)) _ 4 | - _ 108(CsC)
log r - log 7
1 2][¢" oo
+(|| g -
+elg[(lldYlloo + C1) (inflgu inf I¢, logr
) L
dS [e'e) C -
+elg|([[difloo + C2) <inf]_§s infI_¢ logr

for any sufficiently small > 0. Since € > 0 is arbitrary, we conclude that

B
limsup ZB@) o pry p-
r—0 log r

The desired result follows now readily from (20) and (32). O
6.6. Conclusion of the proof.

Proof of Theorem /. For each a and § as in the statement of the theorem,
we constructed a measure v on Z with v(KI N KA;) = 1. By Lemmas 7
and 9, it follows for example from Theorem 2.1.5 in [2] that

dimp (K N K3 NZ) = dimy K +dimy K — dimg A — 1.

Since K N K C A is locally diffeomorphic to (K7 N K, N Z) x I, where
I C R is some open interval, we obtain

D(a, f) = dimp (K3 N Ky) = dimy K +dimg K3 —dimg A, (38)
Applying the identities in (14) and (15), we find that
D(a, §) = dimg, K +dim_¢, K5 + 1. (39)

Now consider the additive families &, = (£,)i>0 and & = (—&)¢>0 given by

(E)e(a) = / (Cwodg)(@)dg and (—E)i(x) = / (—£, 0 6g)(x) da.

By Theorem 3.5 in [5], any family of functions that is a linear combination
of at, b*, &, and &, has a unique equilibrium measure. Hence, it follows
from Theorem 8 in [6] that

P
dimg, K = max{fh“g< d),u : u € Mg and P (u) = a}
A Su

and

dim_¢, K = max{% tp € Mg and Py (p) = B}.

The first statement in the theorem follows now readily from (38) and (39).
To prove the second statement, note that by Theorem 8 in [6] we also have

dimg, K = min{S,(a,q) : ¢ € R},
where S¢, (o, ¢) is the unique real number such that
Ps (q(a+ - ab+) — Se, (o, q)gu) =0.
By Proposition 5 in [6], the function
(@0, p) = Po(g(a® —ab™) — ptu)
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is of class C''. Hence, applying the implicit function theorem, we find that
(@, q) = Se, (v, q) is also of class C1, which implies that the map

int P5(Ms) 3 o+ dimg, K7
is continuous. One can show in a similar manner that the map
int Py (Mo) > B dim_¢, K

is continuous, which completes the proof of the theorem. O
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