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Abstract. We construct equilibrium and Gibbs measures in the con-
text of the nonadditive thermodynamic formalism for flows. More pre-
cisely, we consider the class of almost additive families of potentials and
after establishing an appropriate version of the classical variational prin-
ciple for the topological pressure, we obtain the existence and uniqueness
of equilibrium and Gibbs measures for families with bounded variation.

1. Introduction

We first recall some of the main components of the classical thermody-
namic formalism. The notion of the topological pressure P (φ) of a continu-
ous function φ with respect to a map f : X → X was introduced by Ruelle
in [15] for expansive maps and by Walters in [17] in the general case. They
also established a variational principle for the topological pressure:

P (φ) = sup
µ

(
hµ(f) +

∫
X
φdµ

)
,

with the supremum taken over all f -invariant probability measures µ on X,
denoting by hµ(f) the Kolmogorov–Sinai entropy of f with respect to µ.
An f -invariant probability measure µ on X is called an equilibrium measure
for φ if

P (φ) = hµ(f) +

∫
X
φdµ.

These measures and particularly their Gibbs property play an important role
in the dimension theory and multifractal analysis of dynamical systems. We
refer the reader to the books [3, 6, 12, 16] for details and further references.

The nonadditive thermodynamic formalism was introduced in [1] as a gen-
eralization of the classical thermodynamic formalism, essentially replacing
the topological pressure P (φ) by the topological pressure P (Φ) of a sequence
of continuous functions Φ = (φn)n∈N. This formalism contains as a partic-
ular case a new formulation of the subadditive thermodynamic formalism
introduced by Falconer in [8]. Moreover, for additive sequences it recovers
the notion of topological pressure introduced by Pesin and Pitskel’ in [13] as
well as the notions of lower and upper capacity topological pressures intro-
duced by Pesin in [11] for an arbitrary set. The nonadditive thermodynamic
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formalism also plays a corresponding role in the dimension theory of dynam-
ical systems. In particular, [1] includes a version of the variational principle
for the topological pressure (for discrete time), although with restrictive
assumptions on the sequence Φ. This justifies the interest in looking for
more general classes of sequences of functions for which it is still possible to
establish a variational principle, including in the case of flows.

Our main objective is precisely to consider a new class of families for
which it is still possible not only to establish a variational principle for
the topological pressure, but also to discuss the existence and uniqueness
of equilibrium and Gibbs measures. This is the class of almost additive
families: a family of functions (at)t≥0 is said to be almost additive with
respect to a flow (φt)t∈R if there exists a constant C > 0 such that

−C + at + as ◦ φt ≤ at+s ≤ at + as ◦ φt + C

for every t, s ≥ 0. In particular, we establish the following variational prin-
ciple for the topological pressure. We denote by M the set of all Φ-invariant
probability measures on X and we refer to Section 2 for the notion of tem-
pered variation.

Theorem 1. Let Φ be a continuous flow on a compact metric space X and
let a be an almost additive family of continuous functions with tempered
variation such that supt∈[0,s] ‖at‖∞ <∞ for some s > 0. Then

P (a) = sup
µ∈M

(
hµ(Φ) + lim

t→∞

1

t

∫
X
at dµ

)
. (1)

We also consider the particular case of hyperbolic flows and we establish
the existence and uniqueness of the equilibrium measure of an almost ad-
ditive family of continuous functions with bounded variation as well as its
Gibbs property. We say that a Φ-invariant measure µ on X is an equilibrium
measure for the almost additive family a (with respect to the flow Φ) if the
supremum in (1) is attained at µ, that is, if

P (a) = hµ(Φ) + lim
t→∞

1

t

∫
X
at dµ.

The notion of a Gibbs measure requires introducing the somewhat technical
notion of a Markov system (see Section 3.1). Our main result is the following
theorem.

Theorem 2. Let Λ be a hyperbolic set for a topologically mixing C1 flow Φ
and let a be an almost additive family of continuous functions on Λ with
bounded variation such that P (a) = 0 and supt∈[0,s] ‖at‖∞ < ∞ for some
s > 0. Then:

(1) there exists a unique equilibrium measure for a;
(2) there exists a unique invariant Gibbs measure for a;
(3) the two measures are equal and are mixing.

Note that there is no loss of generality in assuming that P (a) = 0. Indeed,
let b = (bt)t≥0 be an almost additive family of continuous functions on Λ
with bounded variation such that supt∈[0,s] ‖bt‖∞ <∞ for some s > 0. Then

let a = (at)t≥0 be the family of continuous functions on Λ defined by

at = bt − P (b)t
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for each t ≥ 0. Clearly, a is almost additive, has bounded variation and sat-
isfies supt∈[0,s] ‖at‖∞ < ∞ and P (a) = 0. For each Φ-invariant probability
measure µ on Λ we have

lim
t→∞

1

t

∫
X
at dµ = lim

t→∞

1

t

∫
X
bt dµ− P (b).

This readily implies that a and b have the same equilibrium measures.
To the possible extent, and up to the need of various nontrivial modi-

fications in the case of flows, our arguments follow former work in [2] for
discrete time.

2. Variational principle

In this section we consider the nonadditive topological pressure for a flow
and we establish a version of the variational principle for an almost additive
family of continuous functions.

We first recall the notion of nonadditive topological pressure for a flow.
Let Φ = (φt)t∈R be a continuous flow on a compact metric space (X, d).
Moreover, let a = (at)t≥0 be a family of continuous functions at : X → R
with tempered variation. This means that

lim
ε→0

lim
t→+∞

γt(a, ε)

t
= 0,

where

γt(a, ε) = sup
{
|at(y)− at(x)| : y ∈ Bt(x, ε) for some x ∈ X

}
taking

Bt(x, ε) =
{
y ∈ X : d(φs(y), φs(x)) < ε for s ∈ [0, t]

}
. (2)

Given ε > 0, we say that a set Γ ⊂ X × R+
0 covers Z ⊂ X if⋃

(x,t)∈Γ

Bt(x, ε) ⊃ Z

and we write

a(x, t, ε) = sup
{
at(y) : y ∈ Bt(x, ε)

}
for (x, t) ∈ Γ.

For each Z ⊂ X and α ∈ R, let

M(Z, a, α, ε) = lim
T→+∞

inf
Γ

∑
(x,t)∈Γ

exp(a(x, t, ε)− αt), (3)

with the infimum taken over all countable sets Γ ⊂ X× [T,+∞) covering Z.
When α goes from −∞ to +∞, the quantity in (3) jumps from +∞ to 0 at
a unique value and so one can define

P (a|Z , ε) = inf
{
α ∈ R : M(Z, a, α, ε) = 0

}
.

Moreover, the limit

P (a|Z) = lim
ε→0

P (a|Z , ε)

exists and is called the nonadditive topological pressure of the family a on
the set Z. For simplicity of the notation, we shall also write P (a|X) = P (a).

Now we establish a version of the variational principle for the topological
pressure of an almost additive family of continuous functions. We recall that
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a family a = (at)t≥0 of functions at : X → R is said to be almost additive
(with respect to a flow Φ) if there exists a constant C > 0 such that

−C + at + as ◦ φt ≤ at+s ≤ at + as ◦ φt + C

for every t, s ≥ 0. We denote by M the set of all Φ-invariant probability
measures on X, that is, the probability measures µ on X such that

µ(φt(A)) = µ(A)

for any Borel set A ⊂ X and any t ∈ R. Moreover, for each µ ∈ M, let
hµ(Φ) be the Kolmogorov–Sinai entropy of Φ with respect to µ.

Theorem 3. Let Φ be a continuous flow on a compact metric space X and
let a be an almost additive family of continuous functions with tempered
variation such that supt∈[0,s] ‖at‖∞ <∞ for some s > 0. Then

P (a) = sup
µ∈M

(
hµ(Φ) +

∫
X

lim
t→∞

at(x)

t
dµ(x)

)
= sup

µ∈M

(
hµ(Φ) + lim

t→∞

1

t

∫
X
at dµ

)
.

(4)

Proof. Since a is almost additive, we have

at+s + C ≤ (at + C) + as ◦ φt + C

for s, t ≥ 0. Thus, (an+C)n∈N is subadditive and it follows from Kingman’s
subadditive ergodic theorem that for each measure µ ∈M the limit

ã(x) = lim
n→∞

(an(x)/n)

exists for µ-almost every x ∈ X. Now let [x] be the integer part of the real
number x. Again since a is almost additive, we have

−C + a[t] + at−[t] ◦ φ[t] ≤ at ≤ a[t] + at−[t] ◦ φ[t] + C (5)

for t > 0. Taking N ∈ N such that 1/N < s (with s as in the statement of
the theorem), we obtain∣∣∣∣at(x)

t
−
a[t](x)

t

∣∣∣∣ ≤ ∣∣∣∣(at−[t] ◦ φ[t])(x)

t

∣∣∣∣+
C

t

≤
supt∈[0,1] ‖at‖∞

t
+
C

t

≤
N supt∈[0,1/N ] ‖at‖∞

t
+
NC

t

≤
N supt∈[0,s] ‖at‖∞

t
+
NC

t
.

Taking the limit when t→∞ gives

lim
t→∞

∣∣∣∣at(x)

t
−
a[t](x)

t

∣∣∣∣ = 0. (6)

Since

lim
t→∞

a[t](x)

t
= lim

t→∞

[t]

t

a[t](x)

[t]
= lim

t→∞

a[t](x)

[t]
= ã(x),
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it follows from (6) that

lim
t→∞

at(x)

t
= ã(x)

for µ-almost every x ∈ X. Moreover,

−C[t] +

[t]−1∑
k=0

a1 ◦ φk ≤ a[t] ≤
[t]−1∑
k=0

a1 ◦ φk + C[t]

and so |a[t]/[t]| ≤ ‖a1‖∞ + C. Hence, it follows from Lebesgue’s dominated

convergence theorem that a[t]/[t]→ ã in L1(X,µ) when t→∞ and

lim
t→∞

1

[t]

∫
X
a[t] dµ =

∫
X
ã dµ =

∫
X

lim
t→∞

a[t]

[t]
dµ. (7)

Finally, by (5) we have∣∣∣∣1t
∫
X
at dµ−

[t]

t

1

[t]

∫
X
a[t] dµ

∣∣∣∣ ≤ ∣∣∣∣1t
∫
X
at−[t] ◦ φ[t] dµ

∣∣∣∣+
C

t
µ(X)

≤ 1

t
µ(X) sup

s∈[0,1]
‖as‖∞ +

C

t
µ(X)

and so, using (7), we obtain

lim
t→∞

1

t

∫
X
at dµ = lim

t→∞

[t]

t

1

[t]

∫
X
a[t] dµ =

∫
X

lim
t→∞

at(x)

t
dµ(x).

This shows that the two limits in (4) exist and are equal.
Now we establish the inequality

P (a) ≤ sup
µ∈M

(
hµ(Φ) + lim

t→∞

1

t

∫
X
at dµ

)
. (8)

First we obtain a few auxiliary results. Given x ∈ X, we define a probability
measure on X by

µx,t =
1

t

∫ t

0
δφs(x) ds,

where δy is the probability measure concentrate on y. Let also V (x) be the
set of all sublimits of the family (µx,t)t>0.

Lemma 4. Given x ∈ X and µ ∈ V (x), there exists an increasing sequence
(tn)n∈N such that

lim
n→∞

atn(x)

tn
= lim

t→∞

1

t

∫
X
at dµ.

Proof of the lemma. Let (tn)n∈N be an increasing sequence such that the
sequence of measures (µx,tn)n∈N converges to µ. Given ε > 0, there exist
K > 0 and Cε,k > 0 for each k ≥ K such that∣∣∣∣∣∣an(x)− 1

k

n−1∑
j=0

ak(φj(x))

∣∣∣∣∣∣ ≤ nε+ Cε,k

for every n > 2k (see [9]). This implies that∣∣∣∣an(x)

n
− 1

k

∫
X
ak dµx,n

∣∣∣∣ =

∣∣∣∣∣∣an(x)

n
− 1

kn

n−1∑
j=0

ak(φj(x))

∣∣∣∣∣∣ ≤ ε+
Cε,k
n
. (9)
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Using the sequence tn instead of n in (9) and letting n→∞, we obtain

1

k

∫
X
ak dµ− ε ≤ lim

n→∞

atn(x)

tn
≤ lim

n→∞

atn(x)

tn
≤ 1

k

∫
X
ak dµ+ ε. (10)

Finally, letting k →∞ in (10) gives

lim
k→∞

1

k

∫
X
ak dµ− ε ≤ lim

n→∞

atn(x)

tn
≤ lim

n→∞

atn(x)

tn
≤ lim

k→∞

1

k

∫
X
ak dµ+ ε

and it follows from the arbitrariness of ε that

lim
n→∞

atn(x)

tn
= lim

k→∞

1

k

∫
X
ak dµ = lim

t→∞

1

t

∫
X
at dµ.

This completes the proof of the lemma. �

We also need the following technical property (see [6] for a corresponding
result in the additive case).

Lemma 5. Let Γ ⊂ X × {1} be a finite cover of X. For the open cover
V = {V1, . . . , Vr} of X, where Vj = B1(xj , ε/2) with (xj , 1) ∈ Γ, there exist
m,T ∈ N with T arbitrary large and a sequence U = Vi1 · · ·ViT such that:

(1) x ∈
⋂T
r=1 φ−r+1Vir and

aT (x) ≤ T
(

lim
t→∞

1

t

∫
X
at dµ+ δ

)
;

(2) there exists a subset V ∈ (Vm)k of U of length km ≥ T − m such
that H(V ) ≤ m(hµ(Φ) + δ).

Proof of the lemma. By Lemma 4, given δ > 0, we have∣∣∣∣atn(x)

tn
− lim
t→∞

1

t

∫
X
at dµ

∣∣∣∣ < δ

for any sufficiently large n. So one can take T arbitrarily large such that

aT (x) ≤ T
(

lim
t→∞

1

t

∫
X
at dµ+ δ

)
and the first property follows. The second property can be obtained as in
the proof of Lemma 4.3.2 in [4]. �

Given δ > 0, m ∈ N and u ∈ R, let Xm,u be the set of points x ∈ X
satisfying the two properties in Lemma 5 for some measure µ ∈ V (x) with

u− δ ≤ lim
t→∞

1

t

∫
X
at dµ ≤ u+ δ.

Moreover, let nT be the number of all sequences U ∈ VT with these two
properties for some point x ∈ Xm,u. Proceeding as in the proof Lemma 4.3.3
in [4], we find that

nT ≤ exp[T (hµ(Φ) + 2δ)]
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for any sufficiently large T . Therefore,

M(Xm,u, a, α, ε)

≤ lim
τ→+∞

+∞∑
T=τ

nT exp

[
−αT + T

(
lim
t→∞

1

t

∫
X
at dµ+ δ

)
+ γT (a, ε)

]

≤ lim
τ→+∞

+∞∑
T=τ

exp

[
T

(
hµ(Φ) + lim

t→∞

1

t

∫
X
at dµ+ 3δ − α+ lim

t→+∞

γt(a, ε)

t

)]

≤ lim
τ→+∞

+∞∑
T=τ

βT ,

(11)

where

β = exp

(
−α+ c+ 3δ + lim

t→+∞

γt(a, ε)

t

)
and

c = sup
µ∈M

(
hµ(Φ) + lim

t→∞

1

t

∫
X
at dµ

)
.

For

α > c+ 3δ + lim
t→+∞

γt(a, ε)

t
(12)

we have β < 1 and so it follows from (11) that

M(Xm,u, a, α, ε) ≤ lim
τ→+∞

+∞∑
T=τ

βT = 0 and α > P (a|Xm,u , ε). (13)

Recall that ã = limt→∞(at/t). Taking points u1, . . . , ur such that for each
u ∈ [inf ã, sup ã] there exists j ∈ {1, . . . , r} with |u− uj | < δ, we have

X =
⋃
m∈N

r⋃
i=1

Xm,ui .

Finally, by (12) and (13), we obtain

P (a) = lim
ε→0

P (a, ε)

= lim
ε→0

sup
m,i

P (a|Xm,ui , ε)

≤ c+ lim
ε→0

lim
t→∞

γt(a, ε)

t
+ 3δ = c+ 3δ.

Since δ is arbitrary, we conclude that P (a) ≤ c and so inequality (8) holds.
To obtain the reverse inequality P (a) ≥ c, to the possible extent we follow

corresponding arguments in [4].

Lemma 6. For each ergodic measure µ ∈M, we have

P (a) ≥ hµ(Φ) + lim
t→∞

1

t

∫
X
at dµ.

Proof of the lemma. Given ε > 0, there exist δ ∈ (0, ε), a measurable par-
tition ξ = {C1, . . . , Cm} of X and an open cover V = {V1, . . . , Vk} of X for
some k ≥ m such that:
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(1) diamCj ≤ ε, Vi ⊂ Ci and µ(Ci \ Vi) < δ2 for i = 1, . . . ,m;

(2) the set E =
⋃k
i=m+1 Vi has measure µ(E) < δ2.

We consider a measure ν in the ergodic decomposition of µ with respect to
the time-1 map φ1. The ergodic decomposition is described by a measure τ
in the space M′ of φ1-invariant probability measures that is concentrated on
the ergodic measures (with respect to φ1). Note that ν(E) < δ for ν in a
set Mδ ⊂M′ of positive τ -measure such that τ(Mδ)→ 1 when δ → 0.

For each x ∈ X and n ∈ N, let sn(x) be the number of integers l ∈ [0, n)
such that φl1(x) ∈ E. By Birkhoff’s ergodic theorem, since ν is ergodic for φ1

we have

lim
n→+∞

sn(x)

n
= lim

n→+∞

1

n

n−1∑
j=0

χE(φj1(x)) =

∫
X
χE dν = ν(E) (14)

for ν-almost every x ∈ X. On the other hand, by Lemma 4, there exists an
increasing sequence of integers (tn)n∈N such that

lim
n→∞

atn(x)

tn
= lim

t→∞

1

t

∫
X
at dµ (15)

for µ-almost every x ∈ X. By (14) and (15) together with Egorov’s theorem,
there exist ν ∈Mδ, N1 ∈ N and a measurable set A1 ⊂ X with ν(A1) ≥ 1−δ
such that

sn(x)

n
< 2δ and

∣∣∣∣an(x)

n
− lim
t→∞

1

t

∫
X
at dµ

∣∣∣∣ < δ (16)

for every x ∈ A1 and n > N1. For the partition

ξn :=

n∨
j=0

φ−j1 (ξ),

one can use the Shannon–McMillan–Breiman theorem and again Egorov’s
theorem to conclude that there exist N2 ∈ N and a measurable set A2 ⊂ X
with ν(A2) ≥ 1− δ such that

ν(ξn(x)) ≤ exp [(−hν(φ1, ξ) + δ)n] (17)

for every x ∈ A2 and n > N2, where ξn(x) is the element of ξn containing x.
We take N = max{N1, N2} and A = A1 ∩ A2. Then ν(A) ≥ 1− 2δ and by
construction, (16) and (17) hold for every x ∈ A and n > N .

Let ∆ be a Lebesgue number of the cover V and take ε > 0 with 2ε < ∆.
Given α ∈ R, take N ≥ N such that for each n ≥ N there exists a set
Γ ⊂ X × [n,+∞) covering X with∣∣∣∣∣∣

∑
(x,t)∈Γ

exp(a(x, t, ε)− αt)−M(X, a, α, ε)

∣∣∣∣∣∣ < δ. (18)

Without loss of generality, we also assume that N is so large such that

γl(a, ε)

l
≤ lim

t→+∞

γt(a, ε)

t
+ δ

for all l ≥ N . Moreover, given l ∈ N, let

Γl =
{

(x, t) ∈ Γ : Bl(x, ε) ∩A 6= ∅
}
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and let Bl =
⋃

(x,t)∈ΓBt(x, ε). Following arguments in [4], it follows from

the first inequality in (16) and (17) that

card Γl ≥ ν(Bl ∩A) exp
[
hν(φ1, ξ)l − (1 + 2 log card ξ)lδ

]
for l ∈ N. On the other hand, by the second inequality in (16) we have

sup
Bl(x,ε)

al ≥ l
(

lim
t→∞

1

t

∫
X
at dµ− δ

)
− γl(a, ε)

for all l ≥ N and (x, t) ∈ Γl. Then∑
(x,t)∈Γ

exp(a(x, t, ε)− αt)

≥
+∞∑
l=N

∑
(x,t)∈Γl

exp

(
sup
Bl(x,ε)

al − αl
)

≥
+∞∑
l=N

card Γl exp

[(
−α+ lim

t→∞

1

t

∫
X
at dµ− δ

)
l − γl(a, ε)

]

≥
+∞∑
l=N

ν(Bl ∩A)

× exp

[(
hν(φ1, ξ) + lim

t→∞

1

t

∫
X
at dµ−

γl(a, ε)

l
− α

)
l − 2(1 + log card ξ)lδ

]
.

Taking

α < hν(φ1, ξ) + lim
t→∞

1

t

∫
X
at dµ− lim

t→+∞

γt(a, ε)

t

and assuming that δ is so small such that

α < hν(φ1, ξ) + lim
t→∞

1

t

∫
X
at dµ− lim

t→+∞

γt(a, ε)

t
− 2(1 + log card ξ)δ − δ,

we finally obtain∑
(x,t)∈Γ

exp(a(x, t, ε)− αt) ≥
+∞∑
l=N

ν(Bl ∩A) ≥ ν(A) ≥ 1− 2δ.

Hence, it follows from (18) that

M(X, a, α, ε) > 1− 3δ > 0

and so P (a, ε) ≥ α, which implies that

P (a, ε) ≥ hν(φ1, ξ) + lim
t→∞

1

t

∫
X
at dµ− lim

t→+∞

γt(a, ε)

t
.

Now we consider measurable partitions ξl and open covers Vl as before with
ε = 1/l. For each l, take εl > 0 such that 2εl < 1/l is a Lebesgue number of
the cover Vl. Since diam ξl → 0 when l→ +∞, we have

lim
l→+∞

hν(φ1, ξl) = hν(φ1).
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Since the family a has tempered variation, we obtain

P (a) = lim
l→+∞

P (a, εl)

≥ lim
l→+∞

hν(φ1, ξl) + lim
t→∞

1

t

∫
X
at dµ− lim

l→+∞
lim

t→+∞

γt(a, εl)

t

= hν(φ1) + lim
t→∞

1

t

∫
X
at dµ.

Integrating with respect to ν gives

P (a) ≥
∫
Mδ

hν(φ1) dτ(ν) + lim
t→∞

1

t

∫
X
at dµ

and letting δ → 0 yields the inequality

P (a) ≥
∫
M′
hν(φ1) dτ(ν) + lim

t→∞

1

t

∫
X
at dµ

= hµ(φ1) +

∫
Z
b dµ = hµ(Φ) + lim

t→∞

1

t

∫
X
at dµ.

This completes the proof of the lemma. �

Now we consider the set

Xµ =
{
x ∈ X : V (x) = {µ}

}
.

When µ ∈ M is ergodic, Xµ is a nonempty Φ-invariant set and µ(Xµ) = 1.
Hence, it follows from Lemma 6 that

P (a) ≥ P (a|Xµ) ≥ hµ(Φ|Xµ) + lim
t→∞

1

t

∫
Xµ

at dµ = hµ(Φ) + lim
t→∞

1

t

∫
X
at dµ.

When µ ∈ M is arbitrary, we can decompose X into ergodic components
and use the previous argument to show that

P (a) ≥ sup
µ∈M

(
hµ(Φ) + lim

t→∞

1

t

∫
X
at dµ

)
.

This completes the proof of the theorem. �

We say that a Φ-invariant measure µa is an equilibrium measure for the
almost additive family a (with respect to the flow Φ) if the supremum in (4)
is attained at µa, that is, if

P (a) = hµa(Φ) + lim
t→∞

1

t

∫
X
at dµa. (19)

The following result gives a criterion for the existence of equilibrium mea-
sures in this context.

Theorem 7. Let Φ be a continuous flow on a compact metric space X
such that the map µ 7→ hµ(Φ) is upper semicontinuous. Then each almost
additive family a of continuous functions with tempered variation has at least
one equilibrium measure.
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Proof. Since an+C is a subadditive sequence of functions, the real sequence∫
X(an + C) dµ is also subadditive. Then

lim
n→∞

1

n

∫
X
an dµ = lim

n→∞

1

n

∫
X

(an + C) dµ

≤ 1

n

∫
X

(an + C) dµ =
1

n

∫
X
an dµ+

C

n
.

(20)

Similarly, the sequence
∫
X(an − C) dµ is supadditive and so

lim
n→∞

1

n

∫
X
an dµ ≥

1

n

∫
X
an dµ−

C

n
. (21)

It follows from (20) and (21) that∣∣∣∣ lim
n→∞

1

n

∫
X
an dµ−

1

n

∫
X
an dµ

∣∣∣∣ ≤ C

n
. (22)

Now let µm be a sequence of measures converging to µ. Then∣∣∣∣ lim
n→∞

1

n

∫
X
an dµm −

1

n

∫
X
an dµm

∣∣∣∣ ≤ C

n

for every m,n ∈ N. Letting m→∞ and then n→∞, we obtain

lim
m→∞

lim
n→∞

1

n

∫
X
an dµm = lim

n→∞

1

n

∫
X
an dµ.

This shows that the map

µ 7→ lim
t→∞

1

t

∫
X
at dµ

is continuous for each almost additive family a. Together with the upper
semicontinuity of the map µ 7→ hµ(Φ), this implies that the map

µ 7→ hµ(Φ) + lim
t→∞

1

t

∫
X
at dµ

is upper semicontinuous. Hence, in view of the compactness of M there
exists a measure µa ∈M satisfying (19). �

3. Hyperbolic flows

In this section we consider the particular case of hyperbolic flows and we
describe a general condition for the uniqueness of the equilibrium measure of
an almost additive family of continuous functions with tempered variation
as well as for its Gibbs property.

3.1. Basic notions. Let Φ = (φt)t∈R be a C1 flow on a smooth manifold M .
A compact Φ-invariant set Λ ⊂ M is called a hyperbolic set for Φ if there
exists a splitting

TΛM = Es ⊕ Eu ⊕ E0

and constants c > 0 and λ ∈ (0, 1) such that for each x ∈ Λ:

(1) the vector (d/dt)φt(x)|t=0 generates E0(x);
(2) for each t ∈ R we have

dxφtE
s(x) = Es(φt(x)) and dxφtE

u(x) = Eu(φt(x));

(3) ‖dxφtv‖ ≤ cλt‖v‖ for v ∈ Es(x) and t > 0;
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(4) ‖dxφ−tv‖ ≤ cλt‖v‖ for v ∈ Eu(x) and t > 0.

Given a hyperbolic set Λ for a flow Φ, for each x ∈ Λ and any sufficiently
small ε > 0 we define

As(x) =
{
y ∈ B(x, ε) : d(φt(y), φt(x))↘ 0 when t→ +∞

}
and

Au(x) =
{
y ∈ B(x, ε) : d(φt(y), φt(x))↘ 0 when t→ −∞

}
.

Moreover, let V s(x) ⊂ As(x) and V u(x) ⊂ Au(x) be the largest connected
components containing x. These are smooth manifolds, called respectively
(local) stable and unstable manifolds of size ε at the point x, satisfying:

(1) TxV
s(x) = Es(x) and TxV

u(x) = Eu(x);
(2) for each t > 0 we have

φt(V
s(x)) ⊂ V s(φt(x)) and φ−t(V

u(x)) ⊂ V u(φ−t(x));

(3) there exist κ > 0 and µ ∈ (0, 1) such that for each t > 0 we have

d(φt(y), φt(x)) ≤ κµtd(y, x) for y ∈ V s(x)

and

d(φ−t(y), φ−t(x)) ≤ κµtd(y, x) for y ∈ V u(x).

We recall that a set Λ is said to be locally maximal (with respect to a flow Φ)
if there exists an open neighborhood U of Λ such that

Λ =
⋂
t∈R

φt(U).

Given a locally maximal hyperbolic set Λ and a sufficiently small ε > 0,
there exists δ > 0 such that if x, y ∈ Λ satisfy d(x, y) ≤ δ, then there exists
a unique t = t(x, y) ∈ [−ε, ε] such that

[x, y] := V s(φt(x)) ∩ V u(x)

is a single point in Λ.
Now we make some preparations to introduce the notion of a Markov

system. Consider an open smooth disk D ⊂M of dimension dimM−1 that
is transverse to Φ and take x ∈ D. Let U(x) be an open neighborhood of x
diffeomorphic to D × (−ε, ε). Then the projection πD : U(x) → D defined
by πD(φt(y)) = y is differentiable. We say that a closed set R ⊂ Λ ∩D is a
rectangle if R = intR and πD([x, y]) ∈ R for x, y ∈ R.

Consider rectangles R1, . . . , Rk ⊂ Λ (each contained in some open smooth
disk transverse to the flow) such that

Ri ∩Rj = ∂Ri ∩ ∂Rj for i 6= j.

Let Z =
⋃k
i=1Ri. We assume that there exists ε > 0 such that:

(1) Λ =
⋃
t∈[0,ε] φt(Z);

(2) whenever i 6= j, either

φt(Ri) ∩Rj = ∅ for all t ∈ [0, ε]

or

φt(Rj) ∩Ri = ∅ for all t ∈ [0, ε].
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We define the transfer function τ : Λ→ R+
0 by

τ(x) = min{t > 0 : φt(x) ∈ Z},

and the transfer map T : Λ→ Z by

T (x) = φτ(x)(x). (23)

The restriction TZ of T to Z is invertible and we have Tn(x) = φτn(x)(x),
where

τn(x) =

n−1∑
i=0

τ(T i(x)).

The collection R1, . . . , Rk is said to be a Markov system for Φ on Λ if

T (int(V s(x) ∩Ri)) ⊂ int(V s(T (x)) ∩Rj)

and

T−1(int(V u(T (x)) ∩Rj)) ⊂ int(V u(x) ∩Ri)
for every x ∈ intT (Ri)∩ intRj and i, j = 1, . . . , k. By work of Bowen [5] and
Ratner [14], any locally maximal hyperbolic set Λ has Markov systems of
arbitrarily small diameter and the transfer function τ is Hölder continuous
on each domain of continuity.

Given a Markov system R1, . . . , Rk for a flow Φ on a locally maximal
hyperbolic set Λ, we consider the k × k matrix A with entries

aij =

{
1 if intT (Ri) ∩Rj 6= ∅,
0 otherwise,

where T is the map in (23). We also consider the set

ΣA =
{

(· · · i−1i0i1 · · · ) : ainin+1 = 1 for n ∈ Z
}
⊂ {1, . . . , k}Z

and the shift map σ : ΣA → ΣA defined by σ(· · · i0 · · · ) = (· · · j0 · · · ), where
jn = in+1 for each n ∈ Z. We denote by Σn the set of ΣA-admissible
sequences of length n, that is, the finite sequences (i1 · · · in) for which there
exists (· · · j0j1j2 · · · ) ∈ ΣA such that (i1 . . . in) = (j1 · · · jn). Finally, we
define a coding map π : ΣA → Z by

π(· · · i0 · · · ) =
⋂
n∈Z

Ri−n···in ,

where Ri−n···in =
⋂n
l=−n T

−l
Z intRil . The following properties hold:

(1) π ◦ σ = T ◦ π;
(2) π is Hölder continuous and onto;
(3) π is one-to-one on a full measure set with respect to any ergodic

measure of full support and on a residual set.

Given β > 1, we equip ΣA with the distance dβ defined by

dβ(ω, ω′) =

{
β−n if ω 6= ω′,

0 if ω = ω′,

where n = n(ω, ω′) ∈ N∪{0} is the smallest integer such that in(ω) 6= in(ω′)
or i−n(ω) 6= i−n(ω′). One can always choose β so that τ ◦ π is Lipschitz.
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Now let ν be a TZ-invariant probability measure on Z. One can show
that ν induces a Φ-invariant probability measure µ on Λ such that∫

Λ
g dµ =

∫
Z

∫ τ(x)
0 (g ◦ φs)(x) ds dν∫

Z τ dν
(24)

for any continuous function g : Λ→ R. In fact, any Φ-invariant probability
measure µ on Λ is of this form for some TZ-invariant probability measure ν
on Z. Abramov’s entropy formula says that

hµ(Φ) =
hν(TZ)∫
Z τ dν

. (25)

By (24) and (25) we obtain

hµ(Φ) +

∫
Λ
g dµ =

hν(TZ) +
∫
Z Ig dν∫

Z τ dν
, (26)

where Ig(x) =
∫ τ(x)

0 (g ◦ φs)ds. Since τ > 0 on Z, it follows from (26) that

PΦ(g) = 0 if and only if PTZ (Ig) = 0,

where PΦ(g) is the topological pressure of g with respect to Φ and PTZ (Ig) is
the topological pressure of Ig with respect to the map TZ . When PΦ(g) = 0,
this implies that µ is an equilibrium measure for g if and only if ν is an
equilibrium measure for Ig.

3.2. Technical preparations. In this section we make a few technical
preparations. We start by considering the sequence of functions an : Z → R
defined by

cn(x) = aτn(x)(x). (27)

Lemma 8. The sequence c = (cn)n∈N is almost additive with respect to the
map TZ .

Proof. Notice that

cn+m(x) = aτn+m(x)(x) = aτn(x)+τm(Tn(x))(x) (28)

for n,m ∈ N. Since a is almost additive with respect to Φ, by (28) we have

cn+m(x) ≤ aτn(x)(x) + aτm(Tn(x))(φτn(x)(x)) + C

= aτn(x)(x) + aτm(Tn(x))(T
n(x)) + C

= cn(x) + cm(Tn(x)) + C.

Similarly, we have also

cn+m(x) ≥ aτn(x)(x) + aτm(Tn(x))(T
n(x))− C

= cn(x) + cm(Tn(x))− C.
This shows that c is an almost additive sequence with respect to TZ . �

Now we consider the sets Bt(x, ε) in (2) with X = Λ.

Lemma 9. Given δ > 0, there exists a Markov system R1, . . . , Rk and a
constant C > 0 such that

Ri−n···in ⊂ Bτn(y)(y, Cδ)

for every n ∈ N and y ∈ Ri−n···in.
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x

y

TZ(x)
TZ(y)

T 2
Z(x)

T 2
Z(y)

TnZ (x)

TnZ (y) = φτn(y)(y)

φs(x)

φs(y)

δ

Cδ

Figure 1. d(φs(x), φs(y)) < Cδ for s ∈ [0, τn(y)].

Proof. Since the rectangles of a Markov system can have arbitrarily small
diameters, for each δ > 0 there exist R1, . . . , Rk such that

Rj ⊂ B(z, δ) for every z ∈ Rj . (29)

Given x, y ∈ Ri−n···in , we have T k(x), T k(y) ∈ Rik for k ∈ {0, . . . , n}. On

the other hand, by (29), Rik ⊂ B(T k(y), δ) and so d(T k(x), T k(y)) < δ for
k ∈ {0, 1, . . . , n}. Finally, by the uniform continuity of (t, x) 7→ φt(x) on
compact sets, there exists C = C(δ) > 0 (independent of n) such that

d(φs(x), φs(y)) < Cδ for s ∈ [0, τn(y)]

(see Figure 1). This yields the desired statement. �

Given δ > 0 and a Markov system as in Lemma 9, we consider the numbers

Vn(c) = sup
{
|cn(x)− cn(y)| : x, y ∈ Ri1···in

}
for n ∈ N. We recall that a family of functions a is said to have bounded
variation if for every κ > 0 there exists ε > 0 such that

|at(x)− at(y)| < κ whenever y ∈ Bt(x, ε).

We shall always assume that Cδ < ε.

Lemma 10. If a has bounded variation and supt∈[0,s] ‖at‖∞ <∞ for some

s > 0, then supn∈N Vn(c) <∞ (in particular, c has tempered variation).

Proof. Take x, y ∈ Ri−n···in and ω, ω′ ∈ ΣA such that T (x) = π(σ(ω)) and
T (y) = π(σ(ω′)). Choosing β > 1 so that τ ◦ π is Lipschitz, say with
Lipschitz constant L > 0, one can write

|τn(x)− τn(y)| =

∣∣∣∣∣
n−1∑
l=0

τ(T l(x))−
n−1∑
l=0

τ(T l(y))

∣∣∣∣∣
≤

n−1∑
l=0

|(τ ◦ π)(σl(ω))− (τ ◦ π)(σl(ω′))|

≤
n−1∑
l=0

Ldβ(σl(ω), σl(ω′)).
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This implies that there exists D > 0 (independent of x, y and n) such that

|τn(x)− τn(y)| ≤ D. (30)

Assuming without loss of generality that τn(x) > τn(y), since the family a
is almost additive, we have

aτn(x)(x) ≤ aτn(x)−τn(y)(x) + aτn(y)(φτn(x)−τn(y)(x)) + C.

Together with (30), this implies that

cn(x)− cn(y) = aτn(x)(x)− aτn(y)(y)

≤ |aτn(x)−τn(y)(x)|+ |aτn(y)(φτn(x)−τn(y)(x))− aτn(y)(y)|+ C

≤ sup
l∈[0,D]

‖al‖∞ + |aτn(y)(φτn(x)−τn(y)(x))− aτn(y)(y)|+ C

≤ sup
l∈[0,D]

‖al‖∞ + |aτn(y)(φτn(x)−τn(y)(x))− aτn(y)(x)|

+ |aτn(y)(x)− aτn(y)(y)|+ C.
(31)

Since a is almost additive and supt∈[0,s] ‖at‖∞ <∞ for some s > 0, we have

sup
l∈[0,D]

‖al‖∞ ≤M (32)

for some constant M > 0. Moreover, by the definition of bounded variation,

|aτn(y)(x)− aτn(y)(y)| ≤ κ. (33)

Now note that

y = φ−τn(y)(φτn(y)(y)) = φ−τn(y)(T
n(y))

and define

z := φ−τn(y)(φτn(x)(x)) = φ−τn(y)(T
n(x)).

Since Tn(x), Tn(y) ∈ Rin and the map p 7→ φ−τn(y)(p) is uniformly contin-
uous on compact sets, there exists δ′ > 0 (depending only on δ) such that
d(y, z) < δ′. Thus,

d(x, z) ≤ d(x, y) + d(y, z) < δ + δ′.

By the uniform continuity of the map (t, x) 7→ φt(x) on the set [0, τn(y)]×Λ,
there exists ε > 0 such that d(φs(x), φs(z)) < ε for s ∈ [0, τn(y)]. Again by
the bounded variation property, we have

|aτn(y)(z)− aτn(y)(x)| ≤ κ. (34)

By (31) together with (32), (33) and (34), we obtain

cn(x)− cn(y) ≤M + 2κ+ C.

Similarly, using the inequality

aτn(x)(x) ≥ aτn(x)−τn(y)(x) + aτn(y)(φτn(x)−τn(y)(x))− C,

one can show that

cn(x)− cn(y) ≥ −(M + 2κ+ C).

This yields the desired statement. �
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Now we introduce the notion of a Gibbs measure for a flow in the present
context. A measure µ on a hyperbolic set Λ for a flow Φ is called a Gibbs

measure for a if it is induced by a measure ν on Z =
⋃k
i=1Ri satisfying

K−1 ≤
ν(Ri−n···in)

exp [−2nPTZ (c) + c2n(x)]
≤ K

for some constant K ≥ 1, for every n ∈ N and x ∈ Ri−n···in (recall that
cn(x) = aτn(x)(x) for n ∈ N and x ∈ Z). Considering the sets

R̃i1···in =
⋃

i−n···i0

Ri−n···in ,

one can verify that this is equivalent to require that

K̃−1 ≤ ν(R̃i1···in)

exp [−nPTZ (c) + cn(x)]
≤ K̃ (35)

for some constant K̃ ≥ 1, for every n ∈ N and x ∈ R̃i1···in . If the measure ν
is also invariant, then

PTZ (c)− cn(x)

n
− log K̃

n
≤ − 1

n
log ν(R̃i1···in) ≤ PTZ (c)− cn(x)

n
+

log K̃

n
,

which implies

hν(TZ , x) := lim
n→∞

− 1

n
log ν(R̃i1···in) = PTZ (c)− lim

n→∞

cn(x)

n
.

By the Shannon–McMillan–Breiman theorem, we have

hν(TZ) =

∫
Z
hν(TZ , x) dν(x)

= PTZ (c)−
∫
Z

lim
n→∞

cn(x)

n
dν(x)

= PTZ (c)− lim
n→∞

1

n

∫
Z
cn dν

and so

PTZ (c) = hν(TZ) + lim
n→∞

1

n

∫
Z
cn dν.

This shows that any invariant Gibbs measure satisfying (35) is an equilib-
rium measure for c with respect to the map TZ .

3.3. Existence of Gibbs measures. Now we state our main result.

Theorem 11. Let Λ be a hyperbolic set for a topologically mixing C1 flow Φ
and let a be an almost additive family of continuous functions on Λ with
bounded variation such that PΦ(a) = 0 and supt∈[0,s] ‖at‖∞ < ∞ for some
s > 0. Then:

(1) there exists a unique equilibrium measure for a;
(2) there exists a unique invariant Gibbs measure for a;
(3) the two measures are equal and are mixing.

Proof. We always consider a Markov system with sufficiently small diameter
as in Lemmas 9 and 10. Let c be the sequence in (27).
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Lemma 12. We have

PTZ (c) = lim
n→∞

1

n
log

∑
i1···in

exp cn(xi1···in) (36)

for any xi1···in ∈ Ri1···in, for each (i1 · · · in) ∈ Σn and n ∈ N.

Proof of the lemma. Since c is almost additive, the family d given by dn =
cn +C is subadditive. Hence, by Theorem 4.2.6 in [4] (see also [7]) we have

PTZ (d) = lim
n→∞

1

n
log

∑
i1···in

exp max
x∈Ri1···in

dn(x). (37)

Moreover, since c has tempered variation, the same happens with d. Hence,
there exist positive numbers λn decreasing to zero when n→∞ such that

dn(xi1···in) ≥ max
x∈Ri1···in

dn(x)− nλn (38)

for any xi1···in ∈ Ri1···in , (i1 · · · in) ∈ Σn and n ∈ N. By (37) and (38) we
obtain

lim
n→∞

1

n
log

∑
i1···in

exp dn(xi1···in) ≥ PTZ (d).

It also follows directly from (37) that

PTZ (d) ≥ lim
n→∞

1

n
log

∑
i1···in

exp dn(xi1···in).

Hence,

PTZ (d) = lim
n→+∞

1

n
log

∑
i1···in

exp dn(xi1···in)

= lim
n→+∞

1

n
log

∑
i1···in

exp cn(xi1···in) + C.

Since PTZ (d) = PTZ (c) + C, we find that (36) holds. �

Now let

hi1···in = max
{

exp cn(y) : y ∈ Ri1···in
}

and Hn =
∑
i1···in

hi1···in .

Moreover, we define a probability measure νn in the algebra generated by
the sets Ri1···in by

νn(Ri1···in) = hi1···in/Hn (39)

for each (i1 · · · in) ∈ Σn and we extend it to the Borel σ-algebra B of Z.
Let MZ(c) be the set of all sublimits of the sequence (νn)n∈N. Since Z is
compact, MZ(c) is sequentially compact and so it is nonempty.

Lemma 13. Each ν ∈MZ(c) is a Gibbs measure for c with respect to TZ .

Proof of the lemma. Since Φ is topologically mixing, the same happens to
the map TZ . Hence, there exists r ∈ N such that Ar has only positive entries,
where A is the transition matrix of the Markov system. On the other hand,
by Lemma 8, the sequence c is almost additive and so

hi1···inj1···jl−n ≤ e
Chi1···inhj1···jl−n .
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This implies that ∑
j1···jl−n

hi1···inj1···jl−n ≤ e
Chi1···inHl−n (40)

and so

Hl =
∑
i1···in

∑
j1···jl−n

hi1···inj1···jl−n ≤ e
CHl−n

∑
i1···in

hi1···in = eCHl−nHn. (41)

Take k = r−1. Since Ar has only positive entries, given (j1 · · · jl−k) ∈ Σl−k,
there exists (p1 · · · pk) ∈ Σk such that (i1 · · · inp1 · · · pkj1 · · · jl−k) ∈ Σn+l.
Hence, since c is almost additive, for each x ∈ Ri1···inp1···pkj1···jl−k we have

cn+l(x) = cn+k+(l−k)(x)

≥ cn+k(x) + cl−k(T
n+k
Z (x))− C

≥ cn(x) + ck(T
n
Z (x)) + cl−k(T

n+k
Z (x))− 2C

and so

hi1···inp1···pkj1···jl−k ≥ e
cn(x)eck(TnZ (x))ecl−k(Tn+kZ (x))e−2C . (42)

We have also

−C − ‖c1‖∞ ≤
ck(z)

k
≤ C + ‖c1‖∞ (43)

for z ∈ Z and k ∈ N. Now assume that x satisfies ecl−k(Tn+kZ (x)) = hj1···jl−k .

Letting C1 = e−k(C+‖c1‖∞), it follows from (42) and (43) that

hi1···inm1···mkj1···jl−k ≥ e
cn(x)C1e

cl−k(Tn+kZ (x))e−2C

≥ C1e
−2Chi1···inhj1···jl−k .

Hence, by (41), we obtain∑
t1···tn

hi1···int1···tl ≥
∑

j1···jl−k

hi1···inm1···mkj1···jl−k

≥ C1e
−2Chi1···inHl−k

≥ C1e
−3Chi1···in

Hl

Hk
.

(44)

In particular, taking C2 = C1e
−3C/Hk, we find that

Hn+l =
∑
i1···in

∑
t1···tn

hi1···int1···tl ≥
∑
i1···in

C2hi1···inHl = C2HnHl. (45)

Now observe that by (41) the sequence log(eCHn) is subadditive and so

lim
n→∞

1

n
logHn = lim

n→∞

1

n
log(eCHn) = inf

n∈N

1

n
log(eCHn). (46)

Similarly, by (45), the sequence log(C2Hn) is supadditive and so

lim
n→∞

1

n
logHn = lim

n→∞

1

n
log(C2Hn) = sup

n∈N

1

n
log(C2Hn). (47)

On the other hand, by Lemma 12, we have

PTZ (c) = lim
n→∞

1

n
log

∑
i1···in

hi1···in = lim
n→∞

1

n
logHn
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and so it follows from (46) and (47) that

PTZ (c) = inf
n∈N

1

n
log(eCHn) = sup

n∈N

1

n
log(C2Hn).

Therefore,

C2Hn ≤ enPTZ (c) ≤ eCHn for n ∈ N. (48)

Note that νl is measure on the algebra generated by the sets Ri1···il and
it follows from (39) that

νl(Ri1···in) =
∑

j1···jl−n

hi1···inj1···jl−n
Hl

.

By (40), (45) and (48) together with Lemma 10 we obtain

νl(Ri1···in) ≤ hi1···in
Hl−n
Hl

eC ≤ hi1···in
eC

HnC2

≤ e2C

C2
hi1···ine

−nPTZ (c)

=
e2C

C2
(hi1···ine

−cn(x))e−nPTZ (c)+cn(x)

≤ C3e
−nPTZ (c)+cn(x)

(49)

for x ∈ Ri1···in , where C3 = eκe2C/C2 with κ as in the proof of Lemma 10.
Similarly, by (44), (41) and (48) we obtain

νl(Ri1···in) ≥ hi1···in
Hl−n
Hl

C2 ≥ hi1···in
C2

HneC

≥ C2
2

eC
hi1···ine

−nPTZ (c)

≥ C4e
−nPTZ (c)+cn(x)

(50)

for x ∈ Ri1···in , where C4 = C2
2/e

C . Finally, we consider a sequence νmk
converging to ν when k → ∞. Replacing l by mk in (49) and (50) and
letting k →∞, we obtain

C4 ≤
νl(Ri1···in)

exp[−nPTZ (c) + cn(x)]
≤ C3.

This yields the desired statement. �

Lemma 14. Any Gibbs measure for c with respect to TZ is ergodic.

Proof of the lemma. Let ν be a Gibbs measure for c. For m > n we have

Ri1···in ∩ T−mZ (Rj1···jl) =
⋃

p1···pm−n

Ri1···inp1···pm−nj1···jl

and so

ν(Ri1···in ∩ T−mZ (Rj1···jl)) =
∑

p1···pm−n

ν(Ri1···inp1···pm−nj1···jl).



EQUILIBRIUM AND GIBBS MEASURES FOR FLOWS 21

Proceeding as in the proof of Lemma 13, we obtain

ν(Ri1···in ∩ T−mZ (Rj1···jl)) ≥ C5

∑
p1···pm−n

(hi1···inp1···pm−nj1···jl)e
−(m+l)PTZ (c)

≥ C6e
−(m+l)PTZ (c)hi1···inhj1···jlHm−n

≥ C7e
(m−n)PTZ (c)e−(m+l)PTZ (c)hi1···inhj1···jl

= C7(hi1···ine
−nPTZ (c))(hj1···jle

−lPTZ (c))

≥ C8ν(Ri1···in)ν(Rj1···jl),

for some constants C5, C6, C7, C8 > 0. Since the sets Ri1···in generate the
Borel σ-algebra, each Borel set can be arbitrarily approximated in measure
by a disjoint union of sets Rp1···pm (not necessarily with the same m). Thus,

ν(E ∩ T−mZ (F )) ≥ C8ν(E)ν(F ) (51)

for any Borel sets E,F ⊂ Z. Now let E be a TZ-invariant set and take
F = Ec. Then ν(E ∩T−mZ (F )) = 0 for every m ∈ N and it follows from (51)
that either ν(E) = 0 or ν(E) = 1. Hence, the measure ν is ergodic. �

We proceed with the proof of the theorem. By Lemma 13, there exists a
Gibbs measure ν for c. Any limit point µ of the sequence

νn =
1

n

n−1∑
l=0

ν ◦ T−lZ

is a TZ-invariant measure. Since

ν(T−lZ (Ri1···in)) =
∑
j1···jl

ν(Rj1···jli1···in),

one can use analogous arguments to those in Lemma 13 to obtain

L̃ν(Ri1···in) ≤ ν(T−lZ (Ri1···in)) ≤ Lν(Ri1···in)

for some constants L, L̃ > 0. Therefore,

L̃ν(Ri1···in) ≤ 1

n

n−1∑
l=0

ν(T−lZ (Ri1···in)) ≤ Lν(Ri1···in)

and so

L̃ν(Ri1···in) ≤ µ(Ri1···in) ≤ Lν(Ri1···in) (52)

for every n ∈ N and (i1 · · · in) ∈ Σn. It follows from (52) that µ is a
Gibbs measure for c. By Lemma 14, the measure ν is ergodic and so, again
by (52), the measure µ is also ergodic. We claim that µ is unique. Indeed,
assume that there exists another TZ-invariant measure µ̃ satisfying (52). By
the Gibbs property, µ̃ is equivalent to µ and since two equivalent invariant
ergodic measures are equal, we conclude that µ = µ̃.

Now let ν be an equilibrium measure for c with respect to TZ and let
µ be the unique TZ-invariant Gibbs measure for c. We claim that ν = µ.
Observe that ν = βη + (1 − β)µ for some constant β ∈ [0, 1] and some
invariant measures η, µ such that µ � µ and η ⊥ µ. By Lemma 14, µ is
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ergodic and so by Birkhoff’s ergodic theorem together with the fact that
µ� µ we obtain ∫

Z
φdµ =

∫
Z
φdµ

for every measurable bounded function φ : Z → R. In particular, µ = µ.
Since η and µ are mutually singular TZ-invariant probability measures,

hν(TZ) = hβη+(1−β)µ(TZ) = βhη(TZ) + (1− β)hµ(TZ).

The fact that ν is an equilibrium measure for c implies that

PTZ (c) = hν(TZ) + lim
n→∞

1

n

∫
Z
cn dν

= βhη(TZ) + (1− β)hµ(TZ)

+ lim
n→∞

1

n

(∫
Z
cnβ dη +

∫
Z
cn(1− β) dµ

)
= β

(
hη(TZ) + lim

n→∞

1

n

∫
Z
cn dη

)
+ (1− β)

(
hµ(TZ) + lim

n→∞

1

n

∫
Z
cn dµ

)
.

(53)

We already know that any invariant Gibbs measure is an equilibrium mea-
sure. Since µ is an equilibrium measure, it follows from (53) that either
β = 0, and so ν = µ = µ, or η is also an equilibrium measure for c.

We show that η cannot be an equilibrium measure, in view of the as-
sumption η ⊥ µ. Let E ⊂ Z be a TZ-invariant set such that µ(E) = 0 and
ν(E) = 1. Given ε > 0, there exists n = n(ε) ∈ N and a union Un of sets of
the form Ri1···in satisfying

µ ((E \ Un) ∪ (Un \ E)) < ε and ν ((E \ Un) ∪ (Un \ E)) < ε. (54)

Considering the partition ξn = {Ri1···in : (i1 · · · in) ∈ Σn} of Z we have

Hµ(ξn) = −
∑
i1···in

µ(Ri1···in) logµ(Ri1···in)

and so

hµ(TZ) = lim
n→∞

1

n
Hµ(ξn) = inf

n∈N

1

n
Hµ(ξn) (55)

for any probability measure µ on Z. By (22) and (55), we obtain

n

(
hη(TZ) + lim

n→+∞

1

n

∫
Z
cn dη

)
≤ Hη(ξn) +

∫
Z
cn dη + C

= −
∑
i1···in

η(Ri1···in) log η(Ri1···in) +
∑
i1···in

∫
Ri1···in

cn dη + C

≤
∑
i1···in

−η(Ri1·in) log η(Ri1···in) +
∑
i1···in

∫
Ri1···in

[Vn(c) + cn(xi1···in)] dη + C
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=
∑

Ri1···in

η(Ri1···in) [− log η(Ri1···in) + cn(xi1···in)] + Vn(c) + C

=
∑

Ri1···in∩Un=∅

η(Ri1···in) [− log η(Ri1···in) + cn(xi1···in)]

+
∑

Ri1···in∩Un 6=∅

η(Ri1···in) [− log η(Ri1···in) + cn(xi1···in)] + Vn(c) + C

for any xi1···in ∈ Ri1···in . For example by inequality (20.3.5) in [10], we have

k∑
i=1

yi(bi − log yi) ≤
k∑
i=1

yi log

k∑
j=1

ebj +
1

e

for any bi ∈ R and yi ≥ 0 for i = 1, . . . , k. This gives

n

(
hη(TZ) + lim

n→+∞

1

n

∫
Z
cn dη

)
≤

∑
Ri1···in∩Un=∅

η(Ri1···in) log
∑

Ri1···in∩Un=∅

ecn(xi1···in ) +
1

e

+
∑

Ri1···in∩Un 6=∅

η(Ri1···in) log
∑

Ri1···in∩Un 6=∅

ecn(xi1···in ) +
1

e
+ Vn(c) + C

≤ η(Un) log
∑

Ri1···in∩Un=∅

ecn(xi1···in )

+ η(Z \ Un) log
∑

Ri1···in∩Un 6=∅

ecn(xi1···in ) +
2

e
+ Vn(c) + C,

for any xi1···in ∈ Ri1···in . Therefore, together with the fact that µ is a Gibbs
measure for c, we obtain

n

(
hη(TZ) + lim

n→+∞

1

n

∫
Z
cn dη − PTZ (c)

)
≤ 2

e
+ Vn(c) + C + η(Un) log

∑
Ri1···in∩Un=∅

ecn(xi1···in )−nPTZ (c)

+ η(Z \ Un) log
∑

Ri1···in∩Un 6=∅

ecn(xi1···in )−nPTZ (c)

≤ 2

e
+ Vn(c) + C + η(Un) log[K̃µ(Un)] + η(Z \ Un) log[K̃µ(Z \ Un)],

(56)

for some constant K̃ > 0. Letting ε → 0 in (54), we have η(Un) → 0 and
µ(Un) → 1 when n → ∞. On the other hand, by Lemma 10, we have
supn∈N Vn(c) < ∞ and so the right-hand side of (56) tends to −∞ when
n→∞. This implies that

hη(TZ) + lim
n→+∞

1

n

∫
Z
cn dη < PTZ (c)

and so η is not an equilibrium measure for c. This shows that µ is the only
equilibrium measure for c and ν = µ.
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Finally, we show that the measure µ is mixing. Since µ is a Gibbs measure,
by (51) we have

lim
m→∞

µ(E ∩ T−mZ (F )) ≥ C8µ(E)µ(F ) (57)

for any Borel sets E,F ⊂ Z. Proceeding as in the proof of Lemma 14, one
can also show that

lim
m→∞

µ(E ∩ T−mZ (F )) ≤ C9µ(E)µ(F ) (58)

for any Borel sets E,F ⊂ Z and some constant C9 > 0. By (57) and (58),
together for example with Lemma 20.3.5 and Proposition 20.3.6 in [10], we
conclude that µ is mixing. This completes the proof of the theorem. �
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