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Abstract. We introduce a higher-dimensional version of the nonlin-
ear thermodynamic formalism introduced by Buzzi and Leplaideur, in
which a potential is replaced by a family of potentials. In particular, we
establish a corresponding variational principle and we discuss the ex-
istence, characterization, and number of equilibrium measures for this
higher-dimensional version.

1. Introduction

Recently, Buzzi and Leplaideur [8] introduced a variation of the thermo-
dynamic formalism, which they called nonlinear thermodynamic formalism.
Roughly speaking, this amounts to compute the topological pressure replac-
ing Birkhoff sums by images of them under a given function (that may be
nonlinear and thus the name). Our main aim is twofold:

(1) to introduce a higher-dimensional version of their notion of topolog-
ical pressure, replacing a potential by a family of potentials, and to
establish a corresponding variational principle;

(2) to discuss the existence, characterization, and number of equilibrium
measures, with special attention to the new phenomena that occur
in this higher-dimensional version.

We also give a characterization of the nonlinear pressure as a Carathéodory
dimension, which allows us to extend the notion to noncompact sets.

The most basic notion of the mathematical thermodynamic formalism is
topological pressure. It was introduced by Ruelle [24] for expansive maps
and by Walters [28] in the general case. For a continuous map T : X → X
on a compact metric space, the topological pressure of a continuous function
ϕ : X → R is defined by

P (ϕ) = lim
ε→0

lim sup
n→∞

1

n
log sup

E

∑
x∈E

expSnϕ(x), (1)

with the supremum taken over all (n, ε)-separated sets E and where Snϕ =∑n−1
k=0 ϕ ◦ T k. An important relation between the topological pressure and
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the Kolmogorov–Sinai entropy is given by the variational principle

P (ϕ) = sup
µ

(
hµ(T ) +

∫
X
ϕdµ

)
, (2)

with the supremum taken over all T -invariant probability measures µ on X
and where hµ(T ) denotes the entropy with respect to µ. This was established
by Ruelle [24] for expansive maps and by Walters [28] in the general case.
The theory is now a broad and active independent field of study with many
connections to other areas of mathematics. We refer the reader to the books
[2, 6, 14, 15, 20, 21, 25, 29] for many developments.

Building on work on the Curie–Weiss mean-field theory in [17], the non-
linear topological pressure was introduced in [8] as a generalization of (1)
as follows (more precisely, we give an equivalent formulation using sepa-
rated sets instead of covers). Given a continuous function F : R → R, the
nonlinear topological pressure of a continuous function ϕ : X → R is given by

PF (ϕ) = lim
ε→0

lim sup
n→∞

1

n
log sup

E

∑
x∈E

exp

[
nF

(
Snϕ(x)

n

)]
, (3)

with the supremum taken over all (n, ε)-separated sets E. For F (x) = x we
recover the classical topological pressure. Buzzi and Leplaideur also estab-
lished a version of the variational principle in (2). Namely, assuming that
the pair (T,Φ) has plenty ergodic measures (see Section 2.1 for the defini-
tion; in [8] this property is referred to as “abundance of ergodic measures”),
they proved that

PF (ϕ) = sup
µ

(
hµ(T ) + F

(∫
X
ϕdµ

))
, (4)

with the supremum taken over all T -invariant probability measures µ on X.
In addition, they characterized the equilibrium measures of this thermody-
namic formalism, that is, the invariant probability measures at which the
supremum in (4) is attained, and they showed that a new type of phase
transition can occur. Namely, one may have more than one equilibrium
measure, although we still have a central limit theorem (see also [16, 26]).

As described above, our main aim in the paper is to understand whether
and how the results in [8] extend to the higher-dimensional case. This corre-
sponds to replace the functions F and ϕ in (3), respectively, by a continuous
function F : Rd → R and by a family Φ = {ϕ1, . . . , ϕd} of continuous func-
tions ϕi : X → R for i = 1, . . . , d. The nonlinear topological pressure of Φ is
then defined by

PF (Φ) = lim
ε→0

lim sup
n→∞

1

n
log sup

E

∑
x∈E

exp

[
nF

(
Snϕ1(x)

n
, . . . ,

Snϕd(x)

n

)]
,

with the supremum taken over all (n, ε)-separated sets E. Whenever pos-
sible, we follow a similar approach to obtain a variational principle and to
discuss the existence, characterization, and number of equilibrium measures.

In particular, assuming that the pair (T,Φ) has plenty ergodic measures,
we establish the variational principle

PF (Φ) = sup
µ

(
hµ(T ) + F

(∫
X
ϕ1 dµ, . . . ,

∫
X
ϕd dµ

))
, (5)
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with the supremum taken over all T -invariant probability measures µ on X.
As in [8], for a certain class of pairs (T,Φ) we also characterize the equi-
librium measures, that is, the invariant probability measures at which the
supremum in (5) is attained. Consider the sets

L(Φ) =

{(∫
X
ϕ1 dµ, . . . ,

∫
X
ϕd dµ

)
: µ is T -invariant

}
⊂ Rd

and

M(z) =

{
µ is T -invariant :

(∫
X
ϕ1 dµ, . . . ,

∫
X
ϕd dµ

)
= z

}
.

We reduce the problem of finding equilibrium measures to the problem of
finding maximizers of the function E : L(Φ)→ R defined by

E(z) = h(z) + F (z),

where
h(z) = sup

{
hµ(T ) : µ ∈M(z)

}
.

We note that the function E first appeared in [17]. It turns out that h(z)
coincides with the topological entropy of the map T on the set

Cz(Φ) =

{
x ∈ X :

(
lim
n→∞

Snϕ1(x)

n
, . . . , lim

n→∞

Snϕd(x)

n

)
= z

}
(see (6)). In general Cz(Φ) need not be compact and so here we need the
notion of topological entropy for noncompact sets (see Section 2.4 for the
definition). In fact, we show that for each z ∈ intL(Φ) maximizing E there
exists a unique equilibrium measure νz. This is actually a classical equi-
librium measure for a certain function ψz that depends on the family of
functions Φ. In addition, we give conditions for the uniqueness of the equi-
librium measures, both for d = 1 and for d > 1 (see Theorems 10 and 11).

Before proceeding, we highlight the main elements and difficulties of pass-
ing to the higher-dimensional case. To the possible extent, our streamlined
proof of the variational principle follows arguments in [8] for a single func-
tion, considering covers by balls instead of covers by intervals. Our main
result (Theorem 7) gives a characterization of equilibrium measures and uses
in an essential way the higher-dimensional multifractal analysis developed
in [3] (see the following paragraph for further details). It was crucial to make
sure that all was prepared so that we could apply this higher-dimensional
theory, which allows us to give a description of the equilibrium measures for
the nonlinear topological pressure as equilibrium measures of certain func-
tions in span{ϕ1, . . . , ϕd, 1}. In addition, in Section 5 we describe criteria
for the uniqueness of equilibrium measures both for d = 1 and d > 1, and we
give conditions for the coincidence of equilibrium measures for two systems
in terms of the notion of cohomology.

As noted above, to a relevant extent we use in the proofs the higher-
dimensional multifractal analysis developed in [3]. This gives once more a
connection between the thermodynamic formalism and multifractal analy-
sis, which is a principal characteristic of our work. In particular, that other
work includes a conditional variational principle, which shows for example
that the topological entropy of the level sets of pointwise dimensions, local
entropies, and Lyapunov exponents can be approximated simultaneously
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by the entropy of ergodic measures. More precisely, for a continuous map
T : X → X on a compact metric space with upper semicontinuous entropy,
it is shown in [3] that if Φ = {ϕ1, . . . , ϕd} is composed of continuous func-
tions such that each element of span{ϕ1, . . . , ϕd, 1} has unique equilibrium
measure (for the classical topological pressure), then for each z ∈ intL(Φ)
the set Cz(Φ) is nonempty and has topological entropy

h(T |Cz(Φ)) = sup
{
hµ(T ) : µ ∈M(z)

}
= inf

q∈Rd
P
(
〈q,Φ− z〉

)
. (6)

In addition, there exists an ergodic equilibrium measure µz ∈M(z) with

µz(Cz(Φ)) = 1 and hµz(T ) = h(T |Cz(Φ)).

We note that some phenomena absent in classical multifractal analysis for
a single potential may occur in a higher-dimensional multifractal spectrum.
For example, the domain of the spectrum may not be convex and its interior
may be empty or have more than one connected component.

Finally, we also detail further the motivation for introducing the nonlinear
thermodynamical formalism and for our own work with a higher-dimensional
version of this formalism. In statistical mechanics, particularly in the study
of magnetic systems, the Curie–Weiss–Potts model is generally seen as an
extension of the Curie–Weiss model, which can be considered as a mean-
field version of the Ising model (see for example [11, 12, 13] for detailed
discussions). Leplaideur and Watbled traced a parallel between statistical
mechanics and ergodic theory for general spin spaces, introducing a general-
ized Curie–Weiss model in [17] and a generalized Curie–Weiss–Potts model
in [18] (the latter model can be seen as a higher-dimensional generalized
Curie–Weiss model). When X = {−1, 1}N, T is the shift map, ϕ is a Hölder
continuous function and F : R→ R is given by

F (z) =
β

2
z2, where β ≥ 0 is a physical parameter,

we recover the generalized Curie–Weiss model. Again for the shift map T
on X, when Φ = {ϕ1, . . . , ϕd} is a family of Hölder continuous functions and
F : Rd → R is given by

F (z) =
β

2
‖z‖2, where β ≥ 0 is a physical parameter

and ‖·‖ is a given norm on Rd, we recover the generalized Curie–Weiss–
Potts model. In this sense, while [8] and more recently [7] extend the study
of the generalized Curie–Weiss model for any continuous function F : R→ R
and any map T , analogously our work extends the study of the generalized
Curie–Weiss–Potts model to include any continuous function F : Rd → R
and any map T , both under suitable assumptions.

2. Nonlinear topological pressure

2.1. Basic notions. We first recall the notion of nonlinear topological pres-
sure introduced by Buzzi and Leplaideur in [8] as an extension of the classical
topological pressure. Let T : X → X be a continuous map on a compact
metric space X = (X, d). For each n ∈ N we consider the distance

dn(x, y) = max
{
d(T k(x), T k(y)) : k = 0, . . . , n− 1

}
.
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Take n ∈ N and ε > 0. A set C ⊂ X is said to be an (n, ε)-cover of X if⋃
x∈C Bn(x, ε) = X, where

Bn(x, ε) =
{
y ∈ X : dn(y, x) < ε

}
(usually the set Bn(x, ε) is called a Bowen ball). Given a continuous func-
tion F : R → R, the nonlinear topological pressure of a continuous function
ϕ : X → R is defined by

PF (ϕ) = lim
ε→0

lim sup
n→∞

1

n
log inf

C

∑
x∈C

exp

[
nF

(
Snϕ(x)

n

)]
,

where Snϕ =
∑n−1

k=0 ϕ ◦ T k, with the infimum taken over all (n, ε)-covers C.
Let M be the set of T -invariant probability measures on X. We say that

the pair (T, ϕ) has plenty ergodic measures if for each µ ∈ M, h < hµ(T )
and ε > 0 there exists an ergodic measure ν ∈M such that

hν(T ) > h and

∣∣∣∣∫
X
ϕdν −

∫
X
ϕdµ

∣∣∣∣ < ε

(this property is referred to as “abundance of ergodic measures” in [8]).
Assuming that (T, ϕ) has plenty ergodic measures, they obtained the varia-
tional principle

PF (ϕ) = sup
µ∈M

{
hµ(T ) + F

(∫
X
ϕdµ

)}
. (7)

They also established (7) when F is a convex function (without assuming
that the pair (T, ϕ) has plenty ergodic measures). We say that ν ∈M is an
equilibrium measure for (F,ϕ) with respect to T if

PF (ϕ) = hν(T ) + F

(∫
X
ϕdν

)
.

2.2. Higher-dimensional version. In this paper we consider a higher-
dimensional generalization of the nonlinear topological pressure.

Given n ∈ N and ε > 0, a set E ⊂ X is said to be (n, ε)-separated if
dn(x, y) > ε for every x, y ∈ E with x 6= y. Since X is compact, any (n, ε)-
separated set has finite cardinality. Let F : Rd → R be a continuous function
and let Φ = {ϕ1, . . . , ϕd} be a family of continuous functions ϕi : X → R for
i = 1, . . . , d. The nonlinear topological pressure of the family Φ is defined by

PF (Φ) = lim
ε→0

lim sup
n→∞

1

n
log sup

E

∑
x∈E

exp

[
nF

(
Snϕ1(x)

n
, . . . ,

Snϕd(x)

n

)]
(8)

with the supremum taken over all (n, ε)-separated sets E. One can easily
verify that the function

ε 7→ lim sup
n→∞

1

n
log sup

E

∑
x∈E

exp

[
nF

(
Snϕ1(x)

n
, . . . ,

Snϕd(x)

n

)]
is nondecreasing and so PF (Φ) is well defined. Notice that we only need to
consider F on the compact set[

−‖ϕ1‖∞, ‖ϕ1‖∞
]
× · · · ×

[
−‖ϕd‖∞, ‖ϕd‖∞

]
⊂ Rd.
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We also describe briefly a characterization of the nonlinear topological
pressure using (n, ε)-covers. Let

Wn(C) =
∑
x∈C

exp

[
nF

(
Snϕ1(x)

n
, . . . ,

Snϕd(x)

n

)]
.

Following closely arguments in [2], one can show that

PF (Φ) = lim
ε→0

lim sup
n→∞

1

n
log inf

C
Wn(C) = lim

ε→0
lim inf
n→∞

1

n
log inf

C
Wn(C), (9)

with the infimum taken over all (n, ε)-covers C of X.

2.3. Dependence on the potentials. In this section we discuss briefly
how the nonlinear topological pressure depends on the potentials. Given a
family of continuous functions Φ = {ϕ1, . . . , ϕd}, we define the norm

‖Φ‖ = max
j∈{1,...,d}

‖ϕj‖∞.

Recall that F is said to be Hölder continuous with constants C,α > 0 if

|F (x)− F (y)| ≤ C‖x− y‖α∞ for every x, y ∈ Rd.

Proposition 1. Let Φ and Ψ be families of continuous functions and let
F : Rd → R be a continuous function. Then the following properties hold:

(1) the map Φ 7→ PF (Φ) is continuous;
(2) if F is Hölder continuous with constants C,α > 0, then

|PF (Φ)− PF (Ψ)| ≤ C‖Φ−Ψ‖α; (10)

in particular, if F is Lipschitz, then Φ 7→ PF (Φ) is also Lipschitz
with the same Lipschitz constant.

Proof. We first prove property (1). By the uniform continuity of F , given
ε > 0, there exists δ > 0 such that |F (x)−F (y)| < ε whenever ‖x−y‖∞ < δ.
Consider a family of continuous functions Ψ such that ‖Ψ− Φ‖ < δ. Then∥∥∥∥(Snψ1(x)

n
, . . . ,

Snψd(x)

n

)
−
(
Snϕ1(x)

n
, . . . ,

Snϕd(x)

n

)∥∥∥∥
∞
< δ

for any n ∈ N and x ∈ X. By the uniform continuity of F , we obtain

nF

(
Snψ1(x)

n
, . . . ,

Snψd(x)

n

)
< nF

(
Snϕ1(x)

n
, . . . ,

Snϕd(x)

n

)
+ nε

for any n ∈ N and x ∈ X. It follows from the definition of the topological
pressure in (8) that PF (Ψ)−PF (Φ) < ε. One can show in the same manner
that PF (Φ)− PF (Ψ) < ε. Therefore,

|PF (Ψ)− PF (Φ)| < ε,

which establishes the first property in the proposition.
Now assume that F is Hölder continuous with constants C,α > 0. Then

for any families of continuous functions Φ and Ψ we have∣∣∣∣F(Snϕ1(x)

n
, . . . ,

Snϕd(x)

n

)
− F

(
Snψ1(x)

n
, . . . ,

Snψd(x)

n

)∣∣∣∣ ≤ C‖Φ−Ψ‖α

for any n ∈ N and x ∈ X. Proceeding as in the proof of property (1), we
readily obtain inequality (10). �
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2.4. Extension to noncompact sets. Based on work of Pesin and Pitskel’
in [22], we give a characterization of the nonlinear topological pressure as a
Carathéodory dimension. In particular, this allows us to extend the notion
to noncompact sets. We expect that this extension plays an important role in
an appropriate version of multifractal analysis associated with the nonlinear
topological pressure.

We continue to consider a continuous map T : X → X on a compact
metric space. Given a finite open cover U of X, for each n ∈ N let Xn be
the set of strings U = (U1, . . . , Un) with Ui ∈ U for i = 1, . . . , n. We write
l(U) = n and we define

X(U) =
{
x ∈ X : T k−1 ∈ Uk for k = 1, . . . , l(U)

}
.

We say that Γ ⊂ ⋃n∈NXn covers a set Z ⊂ X if Z ⊂ ⋃U∈ΓX(U).
Given a family of continuous functions Φ = {ϕ1, . . . , ϕd}, for each n ∈ N

we define SnΦ = (Snϕ1, . . . , Snϕd). Moreover, given a function F : Rd → R,
for each U ∈ Xn let

FΦ(U) =

{
supX(U) nF

(
1
nSnΦ

)
if X(U) 6= ∅,

−∞ if X(U) = ∅.

Finally, given a set Z ⊂ X and a number α ∈ R, we define

MZ(α,Φ,U) = lim
n→∞

inf
Γ

∑
U∈Γ

exp(−αl(U) + FΦ(U)),

with the infimum taken over all Γ ⊂ ⋃
k≥nXk covering Z and with the

convention that exp(−∞) = 0. One can easily verify that the map α 7→
MZ(α,Φ,U) goes from +∞ to zero at a unique α ∈ R and so one can define

PF (Z,Φ,U) = inf
{
α ∈ R : MZ(α,Φ,U) = 0

}
.

One can proceed as in the proof of Theorem 2.2.1 in [2] to show that the
limit

PF (Z,Φ) = lim
diamU→0

PF (Z,Φ,U)

exists. One could also introduce the number PF (Z,Φ) using (n, ε)-separated
sets or (n, ε)-covers (covers by Bowen balls), in a similar manner to that,
for example, in Appendix D in [1].

When Z = X we recover the notion of nonlinear topological pressure for
any convex function F .

Theorem 2. If the function F is convex, then PF (Φ) = PF (X,Φ).

Proof. The proof is obtained modifying arguments in Section 4.2.3 of [2] and
so we only give a brief sketch. Given a finite open cover U of X, we define

Zn(Φ,U) = inf
Γ

∑
U∈Γ

expFΦ(U),

with the infimum taken over all Γ ⊂ Xn covering X. Given Γ1 ⊂ Xn1 and
Γ2 ⊂ Xn2 , let

Γ′ =
{
UV : U ∈ Γ1 and V ∈ Γ2

}
.
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Note that if Γ1 and Γ2 cover X, then Γ′ also covers X. Moreover, since F
is convex, it follows readily from the identity

Sm+nϕ(x)

m+ n
=

m

m+ n
· Smϕ(x)

m
+

n

m+ n
· Snϕ(Tm(x))

n

that

FΦ(UV ) ≤ FΦ(U) + FΦ(V )

for each UV ∈ Γ′. We have

Zn1+n2(Φ,U) ≤
∑

UV ∈Γ′

expFΦ(UV )

≤
∑
U∈Γ1

expFΦ(U)
∑
V ∈Γ2

expFΦ(V )

and so

Zn1+n2(Φ,U) ≤ Zn1(Φ,U)Zn2(Φ,U).

Therefore, one can define

Z(Φ,U) = lim
n→∞

1

n
logZn(Φ,U).

Finally, it follows as in Lemmas 2.2.5 and 2.2.6 in [2] that

lim
diamU→0

Z(Φ,U) = PF (X,Φ)

and

PF (Φ) = lim
diamU→0

Z(Φ,U).

This yields the desired result. �

Taking F = id and Φ = 0 we recover the notion of topological entropy

h(T |Z) = Pid(Z, 0)

of T on the set Z introduced by Pesin and Pitskel’ in [22]. It coincides with
the notion of topological entropy for noncompact sets introduced earlier by
Bowen in [4]. We emphasize that Z need not be compact nor T -invariant.
When Z = X we recover the usual notion of topological entropy.

3. Variational Principle

In this section we establish a variational principle for the nonlinear topo-
logical pressure.

Let T : X → X be a continuous map on a compact metric space and let
Φ = {ϕ1, . . . , ϕd} be a family of continuous functions. We say that the pair
(T,Φ) has plenty ergodic measures if for each µ ∈ M, h < hµ(T ) and ε > 0
there exists an ergodic measure ν ∈M such that hν(T ) > h and∣∣∣∣∫

X
ϕi dν −

∫
X
ϕi dµ

∣∣∣∣ < ε for i = 1, . . . , d.

Moreover, we say that T has entropy density of ergodic measures if for every
µ ∈ M there exist ergodic measures νn ∈ M for n ∈ N such that νn → µ in
the weak∗ topology and hνn(T )→ hµ(T ) when n→∞. Note that if T has
entropy density of ergodic measures, then the pair (T,Φ) has plenty ergodic
measures for any family of continuous functions Φ.
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In order to give examples of pairs with plenty ergodic measures we first
recall a few notions. Given δ > 0, we say that T has weak specification at
scale δ if there exists τ ∈ N such that for every (x1, n1), . . . , (xk, nk) ∈ X×N
there are y ∈ X and times τ1, . . . , τk−1 ∈ N such that τi ≤ τ and

dni(T
si−1+τi−1(y), xi) < δ for i = 1, . . . , k,

where si =
∑i

i=1 ni +
∑i−1

i=1 τi with n0 = τ0 = 0. When one can take τi = τ
for i = 1, . . . , k − 1, we say that T has specification at scale δ. Finally, we
say that T has weak specification if it has weak specification at every scale δ
and, analogously, we say that T has specification if it has specification at
every scale δ.

It was shown earlier in [10, Theorem B] and [23, Theorem 2.1] that mix-
ing subshifts of finite type and mixing locally maximal hyperbolic sets have
entropy density of ergodic measures. More recently, it was shown in [9]
that a continuous map T : X → X on a compact metric space with the
weak specification property such that the entropy map µ 7→ hµ(T ) is upper
semicontinuous, has entropy density of ergodic measures. In particular, this
implies that the pair (T,Φ) has plenty ergodic measures for any family of
continuous functions Φ. Some examples of maps with plenty ergodic mea-
sures include expansive maps with specification or with weak specification,
topologically transitive locally maximal hyperbolic sets for diffeomorphisms,
and transitive topological Markov chains.

The following theorem establishes a variational principle for the nonlinear
topological pressure.

Theorem 3. Let T : X → X be a continuous map on a compact metric
space and let Φ = {ϕ1, . . . , ϕd} be a family of continuous functions. Given
a continuous function F : Rd → R, if the pair (T,Φ) has plenty ergodic
measures, then

PF (Φ) = sup
µ∈M

{
hµ(T ) + F

(∫
X

Φ dµ

)}
, (11)

where
∫
X Φ dµ =

( ∫
X ϕ1 dµ, . . . ,

∫
X ϕd dµ

)
.

Proof. To the possible extent we follow arguments in [8] for a single function.
We divide the proof into two lemmas.

Lemma 1. Let T : X → X be a continuous map on a compact metric space
and let Φ be a family of continuous functions. Then:

(1)

PF (Φ) ≥ sup
µ∈Merg

{
hµ(T ) + F

(∫
X

Φ dµ

)}
;

(2) if, in addition, the pair (T,Φ) has plenty ergodic measures, then

PF (Φ) ≥ sup
µ∈M

{
hµ(T ) + F

(∫
X

Φ dµ

)}
.

Proof of the lemma. Given r > 0, since X is compact there exist δ, ε > 0
such that

|ϕi(x)− ϕi(y)| < δ/2 whenever d(x, y) < ε
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for i = 1, . . . , d and

|F (v)− F (w)| < r whenever ‖v − w‖ < δ.

For definiteness we shall take the `∞ norm on Rd. Now let µ ∈ M be an
ergodic measure. By Birkhoff’s ergodic theorem and the Brin–Katok local
entropy formula, together with Egorov’s theorem, there exist a set A ⊂ X
of measure µ(A) > 1− r and N ∈ N such that∣∣∣∣Snϕi(x)

n
−
∫
X
ϕi dµ

∣∣∣∣ < δ/2 (12)

for all i = 1, . . . , d and∣∣∣∣ 1n logµ(Bn(x, 2ε)) + hµ(T )

∣∣∣∣ < r, (13)

for x ∈ A and n > N .
Now let C be an arbitrary (n, ε)-cover and let D ⊂ C be a minimal (n, ε)-

cover of A. For each x ∈ D, the ball Bn(x, ε) intersects A at some point y
(otherwise one could discard the point x in D). Note that

d(T k(x), T k(y)) < ε for k = 0, . . . , n− 1.

Hence, it follows from (12) that∣∣∣∣Snϕi(x)

n
−
∫
X
ϕi dµ

∣∣∣∣ ≤ 1

n
|Snϕi(x)− Snϕi(y)|

+

∣∣∣∣Snϕi(y)

n
−
∫
X
ϕi dµ

∣∣∣∣ < δ/2 + δ/2 = δ

for i = 1, . . . , d and so∣∣∣∣F(Snϕ1(x)

n
, . . . ,

Snϕd(x)

n

)
− F

(∫
X

Φ dµ

)∣∣∣∣ < r.

Moreover, Bn(x, ε) ⊂ Bn(y, 2ε) and so it follows from (13) that

1− r < µ(A) ≤ |D|max
x∈D

µ(Bn(x, ε)) ≤ |D|e−n(hµ(T )−r),

where |D| denotes the cardinality of D. Therefore,

Wn(C) ≥ |D| exp

[
nF

(∫
X

Φ dµ

)
− r
]

≥ (1− r) exp[n(hµ(T )− r)] exp

[
nF

(∫
X

Φ dµ

)
− r
]

for any sufficiently large n ∈ N. It follows from (9) that

PF (Φ) ≥ hµ(T ) + F

(∫
X

Φ dµ

)
− 2r.

Finally, by the arbitrariness of r > 0 we obtain

PF (Φ) ≥ hµ(T ) + F

(∫
X

Φ dµ

)
. (14)

This yields the first property in the lemma.
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Now we consider an arbitrary measure ν ∈M. If (T,Φ) has plenty ergodic
measures, then for each h < hν(T ) and ε > 0 there exists an ergodic measure
µ ∈M such that∣∣∣∣F(∫

X
Φ dν

)
− F

(∫
X

Φ dµ

)∣∣∣∣ < ε and hµ(T ) > h

(since F is continuous). By (14) we obtain

PF (Φ) ≥ hµ(T ) + F

(∫
X

Φ dµ

)
> h+ F

(∫
X

Φ dν

)
− ε (15)

and it follows from the arbitrariness of h and ε that

PF (Φ) ≥ hν(T ) + F

(∫
X

Φ dν

)
.

This yields the second property in the lemma. �

Now we obtain the reverse inequality, without requiring that there are
plenty ergodic measures.

Lemma 2. Let T : X → X be a continuous map on a compact metric space
and let Φ be a family of continuous functions. Then

PF (Φ) ≤ sup
µ∈M

{
hµ(T ) + F

(∫
X

Φ dµ

)}
.

Proof of the lemma. Given p < PF (Φ), take ε > 0 such that

lim sup
n→∞

1

n
log inf

C
Wn(C) > p

with the infimum taken over all (n, ε)-covers C. Since each maximal (n, ε)-
separated set En is an (n, ε)-cover, we have

lim sup
n→∞

1

n
logWn(En) > p

and given r > 0, there exists a diverging subsequence (nk)k∈N such that

Wnk(Enk) ≥ exp[nk(p− r)] for k ∈ N. (16)

We cover the compact set Φ(X) by balls B(zi, ri) for i = 1, . . . , L such
that |F (z)− F (zi)| < r for all z ∈ B(zi, ri) and i = 1, . . . , L. Now let

Λik =

{
x ∈ Enk :

(
Snkϕ1(x)

nk
, . . . ,

Snkϕd(x)

nk

)
∈ B(zi, ri)

}
.

Note that

Wnk(Enk) ≤
L∑
i=1

Wnk(Λik) ≤ LWnk(Λik) for some i ∈ {1, . . . , L}

and so it follows from (16) that

exp[nk(p− r)] ≤Wnk(Enk)

≤ LWnk(Λik) ≤ L|Λik| exp[nk(F (zi) + r)].

This implies that

|Λik| ≥ exp[nk(p− F (zi)− 3r)] (17)
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for any sufficiently large k. Proceeding as in the proof of the variational
principle in [19], we also consider the measures

µik =
1

|Λik|
∑
x∈Λik

δx and νik =
1

nk

nk−1∑
j=0

µikT
−j .

Without loss of generality, one can assume that νik converges to a T -invariant
measure µi in the weak∗ topology satisfying

hµi(T ) ≥ lim sup
nk→∞

1

nk
log |Λik|. (18)

By the definition of νik we have∫
X

Φ dµi = lim
k→∞

∫
X

Φ dνik

= lim
k→∞

(∫
X

Snkϕ1

nk
dµik, . . . ,

∫
X

Snkϕd
nk

dµik

)
∈ B(zi, ri).

Hence, by (17) and (18) we obtain

hµi(T ) + F

(∫
X

Φ dµi
)
≥ p− F (zi)− 3r + F (zi)− r

= p− 4r.

The desired result follows from the arbitrariness of r and p. �

Lemmas 1 and 2 establish the statement in the theorem. �

For a general continuous map T , we obtain a variational principle for an
arbitrary convex function F .

Theorem 4. Let T : X → X be a continuous map on a compact metric space
and let Φ = {ϕ1, . . . , ϕd} be a family of continuous functions. If F : Rd → R
is a convex continuous function, then identity (11) holds.

Proof. It follows from the first property in Lemma 1 that

PF (Φ) ≥ hµ(T ) + F

(∫
X

Φ dµ

)
for every ergodic measure µ ∈ M. Now let ν ∈ M be an arbitrary measure
and consider its ergodic decomposition with respect to T . It is described
by a probability measure τ on M that is concentrated on the subset of er-
godic measures Merg. We recall that for every bounded measurable function
ψ : X → R we have ∫

X
ψ dν =

∫
M

(∫
X
ψ dµ

)
dτ(µ).

For a convex function F one can use Jensen’s inequality to obtain

F

(∫
X

Φ dν

)
= F

(∫
M

(∫
X
ϕ1 dµ

)
dτ(µ), . . . ,

∫
M

(∫
X
ϕd dµ

)
dτ(µ)

)
≤
∫
M

F

(∫
X

Φ dµ

)
dτ(µ).
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Moreover, we also have

hν(T ) =

∫
M

hµ(T ) dτ(µ)

(see for example Theorem 9.6.2 in [27]). Hence,

hν(T ) + F

(∫
X

Φ dν

)
≤
∫
M

[
hµ(T ) + F

(∫
X

Φ dµ

)]
dτ(µ) ≤ PF (Φ). (19)

The desired result follows now readily from Lemma 2. �

We also obtain a variational principle over the ergodic measures.

Corollary 5. Let T : X → X be a continuous map on a compact metric
space, let Φ = {ϕ1, . . . , ϕd} be a family of continuous functions, and let
F : Rd → R be a continuous function. If the pair (T,Φ) has plenty ergodic
measures or F is convex, then

PF (Φ) = sup
µ∈Merg

{
hµ(T ) + F

(∫
X

Φ dµ

)}
. (20)

Proof. Since Merg ⊂M, we have

sup
µ∈M

{
hµ(T ) + F

(∫
X

Φ dµ

)}
≥ sup

µ∈Merg

{
hµ(T ) + F

(∫
X

Φ dµ

)}
.

Now we assume that the pair (T,Φ) has plenty ergodic measures and we
establish the reverse inequality. It follows from (15) that for each ν ∈ M,
h < hν(T ) and ε > 0, there exists an ergodic measure µ ∈M such that

hµ(T ) + F

(∫
X

Φ dµ

)
> h+ F

(∫
X

Φ dν

)
− ε.

Since h and ε are arbitrary, this readily implies that

sup
µ∈Merg

{
hµ(T ) + F

(∫
X

Φ dµ

)}
≥ sup

ν∈M

{
hν(T ) + F

(∫
X

Φ dν

)}
.

Finally, it follows from Theorem 3 that identity (20) holds.
Now assume that F is convex. It follows from (19) that

hν(T ) + F

(∫
X

Φ dν

)
≤ sup

µ∈Merg

{
hµ(T ) + F

(∫
X

Φ dµ

)}
for each ν ∈M. Therefore,

sup
ν∈M

{
hν(T ) + F

(∫
X

Φ dν

)}
≤ sup

µ∈Merg

{
hµ(T ) + F

(∫
X

Φ dµ

)}
and applying Theorem 4 we also obtain identity (20). �

Remark. Without the assumptions of plenty ergodic measures or convexity
of the function F we are only able to show that

sup
µ∈M

{
hµ(T ) + F

(∫
X

Φdµ

)}
≥ PF (Φ) ≥ sup

µ∈Merg

{
hµ(T ) + F

(∫
X

Φdµ

)}
.

In fact, if we drop both assumptions, then the variational principle may fail
(see Example 2.5 in [8]).
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4. Equilibrium measures: existence and characterization

In this section we consider the problem of characterizing the equilibrium
measures of the nonlinear topological pressure.

4.1. Existence of equilibrium measures. In view of Theorem 3, we say
that µ ∈M is an equilibrium measure for (F,Φ) with respect to T if

PF (ϕ) = hµ(T ) + F

(∫
X

Φ dµ

)
.

We first formulate a result on the existence of equilibrium measures.

Theorem 6. Let T : X → X be a continuous map on a compact metric space
such that the map µ 7→ hµ(T ) is upper semicontinuous, let Φ = {ϕ1, . . . , ϕd}
be a family of continuous functions, and let F : Rd → R be a continuous
function. If the pair (T,Φ) has plenty ergodic measures or F is convex, then
there exists at least one equilibrium measure for (F,Φ).

Proof. Since the map µ 7→ hµ(T ) is upper semicontinuous, F is continu-
ous and the map µ 7→

∫
X ψ dµ is continuous for each continuous function

ψ : X → R, we conclude that µ 7→ hµ(T ) + F (
∫
X Φ dµ) is upper semicon-

tinuous. Together with the compactness of M, this guarantees that there
exists a measure µΦ ∈M such that

sup
µ∈M

{
hµ(T ) + F

(∫
X

Φ dµ

)}
= hµΦ(T ) + F

(∫
X

Φ dµΦ

)
.

Hence, it follows from the variational principles in Theorems 3 and 4 that
µΦ is an equilibrium measure for (F,Φ). �

In some cases one can pass to the one-dimensional setting of the nonlinear
thermodynamic formalism.

Example 1. Consider the function F : Rd → R defined by

F (z1, . . . , zd) = f(α1z1 + · · ·+ αdzd),

where f : R→ R is a continuous function and αj ∈ R for j = 1, . . . , d. Then

F

(∫
X

Φ dµ

)
= F

(∫
X
ϕ1 dµ, . . . ,

∫
X
ϕd dµ

)
= f

(∫
X
ϕdµ

)
for every µ ∈M, where

ϕ = α1ϕ1 + · · ·+ αdϕd.

Moreover, PF (Φ) = Pf (ϕ) and this implies that (F,Φ) and (f, ϕ) have the
same equilibrium measures. In other words, for a function F as above the
study of equilibrium measures can be reduced to the case when d = 1.

Of course, in general the continuous function F can be much more com-
plicated. For instance, as mentioned in the introduction, the Curie–Weiss–
Potts model involves the study of the topological pressure for the function

F (z1, . . . , zd) =
β

2
(z2

1 + · · ·+ z2
d)1/2,

where β ≥ 0 is a physical parameter.
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For the following example, we recall the notion of cohomology. We say
that a function ϕ : X → R is cohomologous to a function ψ : X → R (with
respect to T ) if there exists a measurable bounded function q : X → R
such that

ϕ(x) = ψ(x) + q(T (x))− q(x) for x ∈ X.
Example 2 (Reduction of dimension via cohomology). Let T be a con-
tinuous map on a compact metric space and let Φ = {ϕ1, . . . , ϕd} be a
family of continuous functions such that the pair (T,Φ) has plenty ergodic
measures. Let F : Rd → R be a continuous function and assume that ϕ1

is cohomologous to ϕd. This implies that
∫
X ϕ1 dµ =

∫
X ϕd dµ for every

µ ∈M. Therefore,

F

(∫
X

Φ dµ

)
= F

(∫
X
ϕ1 dµ,

∫
X
ϕ2 dµ, . . . ,

∫
X
ϕ1 dµ

)
= G

(∫
X
ϕ1 dµ, . . . ,

∫
X
ϕd−1 dµ

)
for every µ ∈M, where

G(z1, . . . , zd−1) = F (z1, z2, . . . , zd−1, z1)

for each (z1, . . . , zd) ∈ Rd. The cohomology assumption also implies that

‖Snϕ1 − Snϕd‖∞/n→ 0 when n→∞.
Together with the continuity of F , this implies that PF (Φ) = PG(Ψ), where
Ψ = {ϕ1, . . . , ϕd−1}. Hence, the pairs (F,Φ) and (G,Ψ) have the same equi-
librium measures. More generally, in order to further reduce the dimension
of the problem, one could consider additional cohomology relations between
any two functions in Φ. For instance, if ϕ1 is cohomologous to all functions
ϕj ∈ Φ, then the problem reduces to the one-dimensional case.

Example 3 (Reduction to the classical case via cohomology). Let T be
a continuous map on a compact metric space and let Φ = {ϕ1, ϕ2} be a
pair of continuous functions such that (T,Φ) has plenty ergodic measures.
Moreover, assume that ϕ1 is cohomologous to ϕ2 and consider the function
F : R2 → R given by F (z1, z2) = (z3

1 + z3
2)1/3. This implies that

∫
X ϕ1 dµ =∫

X ϕ2 dµ for every µ ∈M and so

hµ(T ) + F

(∫
X

Φ dµ

)
= hµ(T ) + F

(∫
X
ϕ1 dµ,

∫
X
ϕ1 dµ

)
= hµ(T ) +

∫
X

21/3ϕ1 dµ

for every µ ∈ M. Letting ψ = 21/3ϕ1, it follows from the definitions that
PF (Φ) = P (ψ), where P denotes the classical topological pressure. Hence,
ν is an equilibrium measure for (F,Φ) if and only if ν is an equilibrium
measure for ψ.

Recall that a continuous function ϕ : X → R is said to have the Bowen
property if there exist K > 0 and ε > 0 such that whenever

d(T k(x), T k(y)) < ε for k = 0, 1, . . . , n− 1
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we have

|Snϕ(x)− Snϕ(y)| ≤ K.
If T : X → X is an expansive map with specification and ϕ1 (or ϕ2) is a
continuous function with the Bowen property, then there exists a unique
equilibrium measure µψ for ψ (see [5]). Therefore, µψ is also the unique
equilibrium measure for (F,Φ).

We observe that this example can be easily generalized to the case when

F (z1, . . . , zd)
n = Hn(z1, . . . , zd),

where Hn is a homogeneous polynomial of degree n, assuming additional
cohomology relations between some pairs of functions in Φ.

4.2. Characterization of equilibrium measures. Now we consider the
problem of characterizing the equilibrium measures. Given a pair (T,Φ), we
consider the set

L(Φ) =

{∫
X

Φ dµ : µ ∈M

}
.

Since the map µ 7→
∫
X ψ dµ is continuous for each continuous function

ψ : X → R and M is compact and connected, the set L(Φ) is a compact
and connected subset of Rd. For each z ∈ Rd, we also consider the level sets

M(z) =

{
µ ∈M :

∫
X

Φ dµ = z

}
and

Cz(Φ) =

{
x ∈ X : lim

n→∞

SnΦ(x)

n
= z

}
. (21)

Following closely [8], we say that the pair (T,Φ) is Cr regular (for some
2 ≤ r ≤ ω, where ω refers to the analytic case) if the following holds:

(1) each function in span{ϕ1, . . . , ϕd, 1} has a unique equilibrium mea-
sure for the classical topological pressure and intL(Φ) 6= ∅;

(2) for each z ∈ intL(Φ) the map q 7→ P (〈q,Φ − z〉), where P is the
classical topological pressure and 〈·, ·〉 is the usual inner product,
takes only finite values, is of class Cr, is strictly convex, and its
second derivative is a positive definite bilinear form for each q ∈ Rd;

(3) the entropy map µ 7→ hµ(T ) is upper semicontinuous and bounded.

Examples of Cr regular pairs (T,Φ) include topologically mixing subshifts of
finite type, C1+ε expanding maps, and C1+ε diffeomorphisms with a locally
maximal hyperbolic set, with Φ composed of Hölder continuous functions.
Finally, we say that the family of functions Φ = {ϕ1, . . . , ϕd} is cohomologous
to a constant c = (c1, . . . , cd) if ϕi is cohomologous to ci for i = 1, . . . , d.
Then L(Φ) = {c} and so intL(Φ) = ∅.

The following theorem is our main result. Given a function F : Rd → R,
we consider the set

K(F,Φ) =

{∫
X

Φ dµ : µ is an equilibrium measure for (F,Φ)

}
⊂ L(Φ).

We also consider the function h : L(Φ)→ R defined by

h(z) = sup
{
hµ(T ) : µ ∈M(z)

}
. (22)
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Theorem 7. Let T : X → X be a continuous map on a compact metric
space and let Φ = {ϕ1, . . . , ϕd} be a family of continuous functions such that
the pair (T,Φ) is C1 regular. For each continuous function F : Rd → R, the
following properties hold:

(1) K(F,Φ) is a nonempty compact set;
(2) K(F,Φ) is the set of maximizers of the function z 7→ h(z) + F (z);
(3) if K(F,Φ) ⊂ intL(Φ), then the equilibrium measures for (F,Φ) are

the elements of {νz : z ∈ K(F,Φ)}, where each νz ∈M satisfies:
• νz is ergodic;
• νz is the unique invariant measure in M(z) supported on the

level set Cz(Φ) such that hνz(T ) = h(z);
• νz is the unique equilibrium measure for a function

ψz = 〈q(z),Φ− z〉 (23)

in span{ϕ1, . . . , ϕd, 1}, for some q(z) ∈ Rd.

Proof. We divide the proof into steps.

Lemma 3. K(F,Φ) is a nonempty compact subset of L(Φ).

Proof of the lemma. Let (zn)n∈N be a sequence in K(F,Φ) converging to a
point z ∈ L(Φ). For each n ∈ N there exists an equilibrium measure µn ∈M

for (F,Φ) such that zn =
∫
X Φ dµn. Passing eventually to a subsequence,

we may assume that there exists µ ∈M such that µn → µ when n→∞ in
the weak∗ topology. Since the map µ 7→ hµ(T ) is upper semicontinuous, we
obtain

PF (Φ) = lim sup
n→∞

[
hµn(T ) + F

(∫
X

Φ dµn

)]
≤ hµ(T ) + F

(∫
X

Φ dµ

)
,

which implies that µ is an equilibrium measure for (F,Φ). Since z =
∫
X Φ dµ,

we conclude that z ∈ K(F,Φ). Hence, K(F,Φ) is closed. Moreover, since

K(F,Φ) ⊂ [−‖ϕ1‖∞, ‖ϕ1‖∞]× · · · × [−‖ϕd‖∞, ‖ϕd‖∞],

the set K(F,Φ) is also bounded. By Theorem 6 it is nonempty. �

Lemma 4. For each z ∈ intL(Φ) there exists an ergodic measure νz ∈ M

such that
∫
X Φ dνz = z. In fact, νz is the unique equilibrium measure for

the function ψz given by (23).

Proof of the lemma. For each z ∈ L(Φ) we consider the function

∆z(q) = P
(
〈q,Φ− z〉 − h(T |Cz(Φ))

)
,

where P is the classical topological pressure and h(T |Cz(Φ)) is the topolog-
ical entropy of T on the set Cz(Φ) (see Section 2.4 for the definition). By
Lemmas 1 and 2 in [3] we have

inf
q∈Rd

∆z(q) ≥ 0 for z ∈ L(Φ),

inf
q∈Rd

∆z(q) = 0 for z ∈ intL(Φ),

and there exists at least one point q(z) ∈ Rd such that ∆z(q(z)) = 0. Since
the map q 7→ ∆z(q) is of class C1 and ∆z has a minimum at q(z), we
conclude that ∂q∆z(q(z)) = 0. Now let νz be the equilibrium measure of the
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function ψz in (23). One can proceed as in the proof of Theorem 8 in [3] to
verify that νz is ergodic with

νz(Cz(Φ)) = 1 and

∫
X

Φ dνz = z.

Moreover, since ψz ∈ span{ϕ1, . . . , ϕd, 1}, it follows from the notion of C1

regular pair that νz is the unique equilibrium measure for ψz. �

Lemma 5. For each z ∈ L(Φ) there exists µ ∈ M(z) with h(z) = hµ(T ).
Moreover, when z ∈ intL(Φ) this measure is unique and coincides with νz.

Proof of the lemma. Take z ∈ L(Φ). By the definition of L(Φ), there exists
µ ∈ M such that

∫
X Φ dµ = z, that is, M(z) 6= ∅. By the compactness

of M(z) and the upper semicontinuity of the map µ 7→ hµ(T ), there exists
µ ∈M(z) maximizing the metric entropy.

Now take z ∈ intL(Φ). By Lemma 4, there exists a measure νz ∈ M

such that
∫
X Φ dνz = z, where νz is the unique equilibrium measure for the

function ψz in (23). Let µ ∈ M(z) be a measure maximizing the metric
entropy. Since

∫
X Φ dµ =

∫
X Φ dνz, it follows readily from (23) that

∫
X
ψz dµ =

∫
X
ψz dνz.

Therefore,

hµ(T ) +

∫
X
ψz dµ ≥ hνz(T ) +

∫
X
ψz dνz = P (ψz),

which implies that µ is also an equilibrium measure for ψz (for the classi-
cal topological pressure). Since ψz has a unique equilibrium measure, we
conclude that µ = νz. �

Now consider the function E : L(Φ)→ R defined by E(z) = h(z) + F (z).

Lemma 6. z ∈ K(F,Φ) if and only if z maximizes the function E.

Proof of the lemma. First assume that z ∈ L(Φ) maximizes the function E.
By Lemma 5, there exists µ ∈M(z) such that h(z) = hµ(T ) and so

hµ(T ) + F

(∫
X

Φ dµ

)
= h(z) + F (z) = sup

µ∈M

{
hµ(T ) + F

(∫
X

Φ dµ

)}
.

This implies that µ is an equilibrium measure for (F,Φ) and so z ∈ K(F,Φ).
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Now assume that z ∈ K(F,Φ). Then there exists an equilibrium mea-
sure µ for (F,Φ) such that z =

∫
X Φ dµ and so

E(z) = h(z) + F (z)

≥ hµ(T ) + F

(∫
X

Φ dµ

)
= sup

ν∈M

{
hν(T ) + F

(∫
X

Φ dν

)}
= sup

w∈L(Φ)
sup

ν∈M(w)

{
hν(T ) + F

(∫
X

Φ dν

)}
= sup

w∈L(Φ)
sup

ν∈M(w)
{hν(T ) + F (w)}

= sup
w∈L(Φ)

{h(w) + F (w)} = sup
w∈L(Φ)

E(w).

This shows that z maximizes E. �

Lemmas 3 and 6 give items (1) and (2) in the theorem. Now we establish
item (3). For each z ∈ K(F,Φ) there exists an equilibrium measure µ for
(F,Φ) such that

∫
X Φ dµ = z. When K(F,Φ) ⊂ intL(Φ), it follows from

Lemmas 4 and 5 that µ is the unique measure with
∫
X Φ dµ = z and that

µ = νz, where νz is ergodic and is the unique equilibrium measure for some
function ψz. �

It is shown in [7] that the condition K(F,Φ) ⊂ intL(Φ) in the last prop-
erty of Theorem 7 holds for a certain class of pairs (T,Φ) that they call
Cr Legendre (we refer to that paper for the definition).

Remark. In the proof of Lemma 4, for each z ∈ intL(Φ) the point q(z)
minimizing ∆z(q) might not be unique. Therefore, one may have more than
one function ψz as in (23). On the other hand, Lemma 5 guarantees that
all possible functions ψz have the same equilibrium measure νz.

5. Number of equilibrium measures

In this section we consider the problem of how many equilibrium measures
a Cr regular system has.

5.1. Preliminary results. We start with some auxiliary results about the
function h in (22). Note that

h(z) = sup

{
hµ(T ) :

∫
X

Φ dµ = z with µ ∈M

}
.

Proposition 8. For a C1 regular pair (T,Φ) the function h : L(Φ) → R is
upper semicontinuous, concave and finite.

Proof. Take z ∈ L(Φ) and consider a sequence (zn)n∈N in L(Φ) such that
zn → z when n → ∞. By Lemma 5, eventually passing to a subsequence
one can assume that for each n ∈ N there exists µn ∈ M(zn) such that
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h(zn) = hµn(T ) and µn → µ when n → ∞ for some µ ∈ M in the weak∗

topology. We also have∫
X

Φ dµ = lim
n→∞

∫
X

Φ dµn = lim
n→∞

zn = z

and so µ ∈ M(z). Moreover, since µ 7→ hµ(T ) is upper semicontinuous, we
obtain

lim sup
n→∞

h(zn) = lim sup
n→∞

hµn(T ) ≤ hµ(T ) ≤ h(z)

and so h is upper semicontinuous on L(Φ).
Now we prove the concavity property. Take z1, z2 ∈ L(Φ) and µ1 ∈M(z1),

µ2 ∈M(z2) such that h(z1) = hµ1(T ) and h(z2) = hµ2(T ). Since the entropy
map is affine, for each t ∈ [0, 1] we have

h(tz1 + (1− t)z2) ≥ htµ1+(1−t)µ2
(T ) = thµ1(T ) + (1− t)hµ2(T )

= th(z1) + (1− t)h(z2).

The upper semicontinuity of h on L(Φ) together with the compactness of
L(Φ) and the fact that M(z) 6= ∅ for each z ∈ L(Φ), guarantee that h is
finite on L(Φ). �

As pointed out in the recent work [30], in strong contrast to what happens
for d = 1, the function z 7→ h(z) need not be continuous on L(Φ).

Proposition 9. If the pair (T,Φ) is Cr regular, then the function h|intL(Φ)

is Cr−1. Moreover, if (T,Φ) is Cω regular, then h|intL(Φ) is analytic.

Proof. It follows from Theorem 12 in [3] that if (T,Φ) is Cr regular, then the
map intL(Φ) 3 z 7→ h(T |Cz(Φ)) (the topological entropy of T on Cz(Φ)) is of

class Cr−1, and that if the pair is Cω regular, then this map is analytic. Since
h(z) = h(T |Cz(Φ)) for z ∈ intL(Φ), we obtain the desired statement. �

For d = 1, Corollary 1.11 in [8] says that if the pair (T,Φ) is Cω and F is
analytic on intL(Φ), then the set K(F,Φ) is finite. In particular, there exist
finitely many equilibrium measures.

5.2. Equilibrium measures I. For d = 1, it was shown in [8] that no point
on ∂L(Φ) maximizes the function E = h+F . By Lemma 6, this implies that
K(F,Φ) ⊂ intL(Φ). It is also shown that h′′(z) < 0 for every z ∈ intL(Φ)
and so h : L(Φ) → R is a strictly concave function. Note that for d = 1 we
have L(ϕ) = [A,B], where A = infµ∈M

∫
ϕdµ and B = supµ∈M

∫
ϕdµ.

The next result is a criterion for uniqueness of equilibrium measures.

Theorem 10. Let (T, ϕ) be a Cr regular pair and let F : R → R be a Cr

function that is concave on [A,B]. Then there exists a unique equilibrium
measure for (F,ϕ). Moreover, the equilibrium measure is ergodic.

Proof. Since F is concave and h is strictly concave, the function E = h+F is
strictly concave. This implies that E has at most one maximizer in (A,B).
Since there is no maximizer of E on ∂L(ϕ) = {A,B} and K(F,ϕ) 6= ∅, we
conclude that there exists a unique point z∗ ∈ (A,B) maximizing E. Hence,
it follows from Lemma 6 that K(F,ϕ) = {z∗}. By Theorem 4.3 in [8]
together with Lemma 4, we conclude that there exists a unique equilibrium
measure for (F,ϕ) and that this measure is ergodic. �
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The following example illustrates various possibilities.

Example 4. Let Σ = {−1, 1} and let T : ΣZ → ΣZ be the two-sided shift.
We consider the function ϕ : Σ → R defined by ϕ(· · ·ω−1ω0ω1 · · · ) = ω0.
Then L(ϕ) = [−1, 1] and the entropy function h : L(ϕ)→ R is given by

h(z) = −1− z
2

log

(
1− z

2

)
− 1 + z

2
log

(
1 + z

2

)
. (24)

For the function F : L(Φ)→ R defined by F (z) = α/(z2 − 2), where α ∈ R,
we have

F ′′(z) = 2α(3z2 + 2)/(z2 − 2)3.

Notice that for α > 0 we have F ′′ < 0 on intL(ϕ). Since F ≡ 0 for α = 0, the
function F is concave on intL(ϕ) whenever α ≥ 0. Hence, by Theorem 10
there exists a unique equilibrium measure νz∗ for (F,ϕ), where z∗ = 0 (see
Figure 1). For α < 0, the number of equilibrium measures may vary and
is the number of absolute maximizers of E on (−1, 1). For instance, for
α = −1 there is one equilibrium measure, while for α = −2.3 there are two
equilibrium measures (see also Figure 1).

Theorem 10 also shows that in order to have finitely many equilibrium
measures it is not necessary that the pair (T, ϕ) is Cω and that the function
F is analytic. We give an example in the nonanalytic C∞ case.

Example 5. Consider the pair (T, ϕ) in Example 4 and let F : R → R be
the function given by

F (z) =

{
3 exp(−1/z) if z > 0,

0 if z ≤ 0.

One can show that F is C∞ but not analytic. For −1 ≤ z ≤ 0, we have

E = h+ F = h+ 0 = h.

It follows from (24) that E has a local maximum y1 = 1 at z∗1 = 0. For
0 < z ≤ 1, one can verify that E has a local maximum y2 ≈ 1.33 at
z∗2 ≈ 0.75. Since y1 < y2, the function E has a unique global maximum at
z∗2 ∈ (0, 1) ⊂ intL(ϕ) (see Figure 2). By Theorem 7, we conclude that νz∗2
is the unique equilibrium measure for (F,ϕ).

5.3. Equilibrium measures II. As in the one-dimensional case, for d > 1
no point in ∂L(Φ) can maximize the function E, that is, K(F,Φ) ⊂ intL(Φ)
(see the Claim in the proof of Theorem 4.15 in [7]). This is possible because
Cr regular pairs are Cr Legendre (see Proposition 4.10 in [7]).

The following statement is a version of the uniqueness result in Theo-
rem 10 for d > 1.

Theorem 11. Let (T,Φ) be a Cr regular pair and let F : Rd → R be a Cr

function that is strictly concave on L(Φ). Then there exists a unique equi-
librium measure for (F,Φ). Moreover, the equilibrium measure is ergodic.

Proof. By Proposition 8, the map z 7→ h(z) is upper semicontinuous on L(Φ).
Since F is Cr on L(Φ), we conclude that z 7→ E(z) is upper semicontinuous
on L(Φ). Together with the compactness of L(Φ), this guarantees the exis-
tence of at least one point in L(Φ) maximizing the function E. On the other
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Figure 1. The number of equilibrium measures depends on
the parameter α.
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Figure 2. Nonanalytic C∞ case

hand, by Propositions 8 and 9 and the strict concavity of F , the function E
is strictly concave on L(Φ) and Cr−1 on intL(Φ). The concavity property
of E implies that there exists at most one maximizer in L(Φ). Since there
are no maximizers of E in ∂L(Φ), the unique point z∗ maximizing E must
be in intL(Φ). It follows now from Theorem 7 that K(F,Φ) = {z∗}, that is,
νz∗ is the unique equilibrium measure for (F,Φ). Moreover, by Lemma 4,
νz∗ is an ergodic measure. �

In Example 4, we have h|∂L(ϕ) ≡ 0. It turns out that this behavior at the
boundary of L(ϕ) is typical for some Cr regular systems, even for d > 1.
Let Hθ be the space of Hölder continuous functions with Hölder exponent
θ > 0. The following result is a particular case of Theorem 14 in [3].

Theorem 12. Let T be a subshift of finite type, a C1+ε diffeomorphism
with a hyperbolic set, or a C1+ε map with a repeller, that is assumed to be
topologically mixing. Then there exists a residual set O ⊂ (Hθ)

d such that
for each Φ ∈ O we have

h|∂L(Φ) ≡ 0 and L(Φ) = intL(Φ). (25)

We also note that in Example 4 with α > 0, the function F satisfies

F |intL(ϕ) > max
z∈∂L(ϕ)

F (z), (26)

where FintL(ϕ) is the restriction to intL(ϕ). In fact, condition (26) together
with the continuity of F implies that F must actually be constant on ∂L(Φ),
as it happens in Example 4. This scenario is a more general situation in
which E = h+ F attains its maximum on intL(Φ):

max
z∈intL(Φ)

E(z) > max
z∈∂L(Φ)

E(z). (27)

Note that this condition may depend not only on F , but also on the family
of functions Φ.

A similar idea works for typical Cr regular systems in the sense that they
belong to the residual set O in Theorem 12. Let (T,Φ) be a Cr regular
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pair satisfying (25). In particular, intL(Φ) 6= ∅. Now let F : Rd → R be a
function satisfying (26) with ϕ replaced by Φ. Since h ≥ 0, we have

max
z∈∂L(Φ)

E(z) ≤ max
z∈∂L(Φ)

h(z) + max
z∈∂L(Φ)

F (z)

≤ h|intL(Φ) + max
z∈∂L(Φ)

F (z)

< h|intL(Φ) + F |intL(Φ) = EintL(Φ),

which implies that property (27) holds. Therefore, K(F,Φ) ⊂ intL(Φ) and
so one can apply item (3) of Theorem 7.

It was shown recently in [7] that condition (27) is satisfied for Cr Legendre
pairs. This implies that we always have K(F,Φ) ⊂ intL(Φ) in our setup.

For d = 1 and Cr regular systems, the function h in (22) is strictly
concave. The next example (which should be compared with the Curie–
Weiss–Potts model for 3 colors) illustrates that this may still happen for
d > 1, but unfortunately we are not able to describe for which Cr regular
pairs the function h is strictly concave.

Example 6. Let T : X → X be the two-sided shift with X = {1, 2, 3}Z and
let ϕ1 = χC1 and ϕ2 = χC3 , where Ci is the set of all sequences

(· · ·ω−1ω0ω1 · · · ) ∈ X
with ω0 = i. Since

∫
X ϕ1dµ = µ(C1) and

∫
X ϕ2dµ = µ(C3) for each µ ∈M,

we have

L(Φ) =
{

(µ(C1), µ(C3)) : µ ∈M
}
.

By Theorem 8 in [3], we obtain

h(z1, z2) = max
µ∈M

{
hµ(T ) : (µ(C1), µ(C2)) = (z1, z2)

}
= −z1 log z1 − z2 log z2 − z3 log z3.

On the other hand, since µ(C1)+µ(C2)+µ(C3) = 1 for each µ ∈M, we have

L(Φ) =
{

(z1, z2) ∈ [0, 1]× [0, 1] : z1 + z2 ≤ 1
}

and

h(z1, z2) = −z1 log z1 − z2 log z2 − (1− z1 − z2) log(1− z1 − z2).

Note that intL(Φ) 6= ∅ and that ∂L(Φ) is the set(
(R× {0}) ∪ ({0} × R) ∪ {(z1, z2) : z1 + z2 = 1}

)
∩ ([0, 1]× [0, 1]).

For (z1, z2) = (1/2, 0), (0, 1/2), (1/2, 1/2) ∈ ∂L(Φ) we have h(z1, z2) = 1 > 0
and so the system is not typical. On the other hand, one can easily verify
that the map (z1, z2) 7→ h(z1, z2) is still strictly concave on L(Φ).

Now consider the function F (z1, z2) = β(z2
1 + z2

2)/2 with β ∈ R. One can
verify that the determinant of the Hessian matrix of E = h+ F is given by

detHE(z1, z2) = β2 + β
z1(1− z1) + z2(1− z2)

z1z2(1− z1 − z2)
+

1

z1z2(1− z1 − z2)
.

Since detHE(z1, z2) > 0 for (z1, z2) ∈ intL(Φ) and β ≥ 0, every critical
point of E is nondegenerate for all β ≥ 0. Hence, for each β ≥ 0, the
function E has at most finitely many critical points. In addition, it was
shown in [7] that condition (27) always holds. So E attains its maximal
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value only at critical points. It follows from Theorem 7 that the pair (F,Φ)
has finitely many equilibrium measures.

On the other hand, for β < 0 the function F is strictly concave and one can
use Theorem 11 to conclude that (F,Φ) has a unique equilibrium measure.

Remark. In Example 6 the parameter β is related to the absolute temper-
ature and the model has physical meaning only when β ≥ 0. However, the
general concave case (with β < 0) might be useful for possible applications
in other contexts.

5.4. Coincidence of equilibrium measures. The following result gives
a sufficient condition so that two systems share equilibrium measures. We
say that Φ1 = {ϕ1,1, . . . , ϕ1,d} is cohomologous to Φ2 = {ϕ2,1, . . . , ϕ2,d} if
ϕ1,i is cohomologous to ϕ2,i for i = 1, . . . , d. Then∫

X
Φ1 dµ =

∫
X

Φ2 dµ for each µ ∈M,

which readily implies that L(Φ1) = L(Φ2).

Proposition 13. Let (T,Φ1) and (T,Φ2) be Cr regular pairs such that Φ1

is cohomologous to Φ2 and let F1 : L(Φ1) → R and F2 : L(Φ2) → R be
continuous functions. If a point z ∈ intL(Φ1) ∩ intL(Φ2) is simultaneously
a maximizer for the functions E1 = h1 + F1 and E2 = h2 + F2, then νz is
an equilibrium measure for (F1,Φ1) and (F2,Φ2).

Proof. Since Φ1 is cohomologous to Φ2, we have L := L(Φ1) = L(Φ2). Now
take z ∈ intL and consider the functions

∆1(q) = P (〈q,Φ1 − z〉)− h1(z) and ∆2(q) = P (〈q,Φ2 − z〉)− h2(z),

where P denotes the classical topological pressure and where each hi is the
corresponding entropy function (see (22)). By the cohomology assumption,
we have

lim
n→∞

‖Snϕ1,i − Snϕ2,i‖∞
n

= 0 for i = 1, . . . , d

and so Cz(Φ1) = Cz(Φ2) for all z ∈ Rd (see (21)). In particular, this implies
that h := h1 = h2. Therefore,

[〈q,Φ1 − z〉 − h1(z)]− [〈q,Φ2 − z〉 − h2(z)] = 〈q,Φ1 − Φ2〉
for q ∈ Rd. Again since Φ1 is cohomologous to Φ2, we conclude that

∆1(q) = ∆2(q) for q ∈ Rd. (28)

On the other hand, by the proof of Theorem 8 in [3] the function q 7→
∆1(q) attains its minimum at a point q1(z) and ν1,z is the unique equilibrium
measure for the function 〈q1(z),Φ1−z〉−h(z). Similarly, q 7→ ∆2(q) attains
its minimum at a point q2(z) and ν2,z is the unique equilibrium measure for
the function 〈q2(z),Φ2 − z〉 − h(z). By (28), one can take q1(z) = q2(z) and
so νz := ν1,z = ν2,z. The desired result follows now from Theorem 7. �

A direct consequence of Proposition 13 is that if Φ1 is cohomologous to Φ2

and the functions E1 and E2 attain maximal values at the same points, then
(F1,Φ1) and (F2,Φ2) have the same equilibrium measures (in particular,
this happens when F1 = F2). For the converse to hold we need stronger
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conditions so that the coincidence of two equilibrium measures yields a co-
homology relation.

Theorem 14. Let X be a topologically mixing locally maximal hyperbolic set
for a diffeomorphism T and let Φ1 and Φ2 be families of Hölder continuous
functions. Moreover, let F1 and F2 be continuous functions. If (F1,Φ1) and
(F2,Φ2) have the same equilibrium measures, then for each z1 and z2 maxi-
mizing E1 and E2, respectively, there exist q1, q2 ∈ Rd such that 〈q1,Φ1−z1〉
is cohomologous to 〈q2,Φ2 − z2〉.
Proof. By Theorem 7, each equilibrium measure for (Fi,Φi) is a measure νzi
with zi ∈ K(Fi,Φi) that is the unique equilibrium measure for

ψi = 〈qi(zi),Φi − zi〉 − hi(zi),
where qi(zi) is a minimizer of the function

∆i(q) = P (〈q,Φi − zi〉)− hi(zi).
Since by hypotheses νz1 = νz2 , the function ψ1 − ψ2 is cohomologous to
P (ψ1)− P (ψ2) ∈ R. But since

∆1(q1(z1)) = ∆2(q2(z2)) = 0

(see Lemma 2 in [3]), we have P (ψ1) = P (ψ2). So there exists a continuous
function S = S(z1, z2) : X → R such that ψ1 − ψ2 = S ◦ T − S, that is,

S ◦ T − S = 〈q1(z1),Φ1 − z1〉 − 〈q2(z2),Φ2 − z2〉 − h1(z1) + h2(z2).

Again since νz1 = νz2 , by Lemma 5 we have

h1(z1) = hνz1 (T ) = hνz2 (T ) = h2(z2).

Hence, for each z1 and z2 maximizing E1 and E2, respectively, there exist
points q1 = q1(z1), q2 = q2(z2) ∈ Rd as in the statement of the theorem. �
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