
A Livšic-type theorem and some regularity

properties for nonadditive sequences of potentials

Carllos Eduardo Holanda1 and Eduardo Santana2

1Department of Mathematics, Shantou University, Shantou, 515063, Guangdong, China
1E-mail address: c.eduarddo@gmail.com

2Universidade Federal de Alagoas, Penedo, 57200-000, Alagoas, Brazil
2E-mail address: jemsmath@gmail.com

Abstract

We study some notions of cohomology for asymptotically additive sequences and
prove a Livšic-type result for almost additive sequences of potentials. As a consequence,
we are able to characterize almost additive sequences based on their equilibrium mea-
sures and also show the existence of almost (and asymptotically) additive sequences of
Hölder continuous functions satisfying the bounded variation condition (with a unique
equilibrium measure) and which are not physically equivalent to any additive sequence
generated by a Hölder continuous function. None of these examples were previously
known, even in the case of full shifts of finite type. Moreover, we also use our main
result to suggest a classification of almost additive sequences based on physical equiv-
alence relations with respect to the classical additive setup.

1 Introduction

Let X be a topological space and T : X → X a map. A sequence of functions (fn)n≥1 is
asymptotically additive with respect to T if for each ε > 0 there exists a function f : X → R
such that

lim sup
n→∞

1

n
∥fn − Snf∥∞ < ε,

where Snf :=
∑n−1

k=0 f ◦ T k is the additive sequence generated by the function f and ∥ · ∥∞
is the usual supremum norm on the space of continuous functions.

A sequence F = (fn)n≥1 is almost additive with respect to T if there exists C > 0 such
that

−C + fm(x) + fn(T
m(x)) ≤ fm+n(x) ≤ fm(x) + fn(T

m(x)) + C

for every x ∈ X and all m,n ≥ 1. Feng and Huang showed in [FH10] that almost additive
sequences are in fact asymptotically additive.
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Inspired by some nomenclature in statistical mechanics and classical thermodynamic
formalism (see for example [Rue78], [VFS93] and [Cun20]), we say that two nonadditive
sequences of functions F := (fn)n≥1 and G := (gn)n≥1 (with respect to some given map)
are physically equivalent, or F is physically equivalent to G, if

lim
n→∞

1

n
∥fn − gn∥∞ = 0.

The following physical equivalence result was obtained in [Cun20]:

Theorem 1. Let F = (fn)n∈N be an asymptotically additive or almost additive sequence
of continuous functions. Then, there exists a continuous function f : X → R such that

lim
n→∞

1

n
∥ fn − Snf ∥∞= 0.

A nonadditive sequence F = (fn)n∈N (with respect to T : X → X) has bounded
variation if there exist M > 0 and ε > 0 such that for x, y ∈ X and n ∈ N, we have that
d(T k(x), T k(y)) < ε for every k ∈ {0, ..., n− 1} implies |fn(x)− fn(y)| ≤M (see section 3).
Observe that in Theorem 1, if the almost additive sequence F has bounded variation, the
additive sequence (Snf)n∈N does not necessarily have bounded variation in general.

A function f : X → R is said to be Bowen or to satisfy the Bowen property if the
additive sequence (Snf)n∈N has bounded variation (see section 2).

Let X be a compact metric space and T : X → X be a continuous map. The following
two questions were posted in [Cun20]:

Question A. Is there, given any almost additive sequence of continuous functions
F = (fn)n∈N with bounded variation, a continuous function f : X → R such that (Snf)n∈N
has bounded variation and

lim
n→∞

1

n
∥fn − Snf∥∞ = 0 ?

Question B. Is there, given any almost additive sequence F = (fn)n∈N with bounded
variation, a continuous function f : X → R such that

sup
n∈N

∥fn − Snf∥∞ <∞ ?

Letting σ : ΣN → ΣN be the left-sided full shift of finite type, other natural finer
questions about nonadditive regularity are the following (see also [LLV22]):

Question C. Is there, given any almost additive sequence F = (fn)n∈N of Hölder con-
tinuous functions with bounded variation (with respect to σ), a Hölder continuous function
f : X → R such that

lim
n→∞

1

n
∥fn − Snf∥∞ = 0 ?

Question D. Is there, given any asymptotically additive sequence F = (fn)n∈N of
(Hölder) continuous functions with bounded variation (with respect to σ) and admitting a
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unique equilibrium measure, a Bowen (or Hölder) continuous function f : X → R such
that

lim
n→∞

1

n
∥fn − Snf∥∞ = 0 ?

It is well known that bounded variation does not guarantee uniqueness of equilibrium
measures for asymptotically additive sequences, even in the case of full shifts of finite type.
Based on that, one can easily find asymptotically additive sequences of locally constant
functions which are not physically equivalent to any additive sequence generated by a
Hölder (or Bowen) continuous function (see Remark 4.5 in [Cun20]). On the other hand,
the same equivalence problem might be different for asymptotically additive sequences with
unique equilibrium measures.

Based on the equivalence possibility brought by Theorem 1, all these questions arise
naturally considering the different levels of additive and nonadditive regularity associated.
We note that for subshifts of finite type, expanding and hyperbolic maps in general, if
f : X → R is a Hölder continuous function then the additive sequence (Snf)n∈N satisfies
the bounded variation property (see section 3).

Observe that Question A does not necessarily imply Question B in general. More-
over, if F is uniformly bounded, that is, supn∈N ∥fn∥∞ < ∞, the sequence has bounded
variation and the questions A and B are always affirmatively answered taking any contin-
uous function f cohomologous to zero.

Let us now see some consequences of answering questions A, B, C and D.

1. Uniqueness of equilibrium measures: a positive answer to Question A implies that
one can obtain the uniqueness of equilibrium measures for almost additive sequences
with bounded variation directly from the classical uniqueness result for a single po-
tential (see [Bow75], [Bar06] and [Mum06]).

2. Quasi-Bernoulli and Gibbs measures: a positive answer to Question B readily im-
plies that every quasi-Bernoulli measure is in fact a Gibbs measure with respect to
some continuous potential (see subsection 4.2 and also [BM07], [Cun20]).

3. Nonadditive ergodic optimization: giving a positive answer to Question C and
Question D would allow us to use ergodic optimization results for Hölder potentials
to either simplify or automatically extend some results for almost and asymptotically
additive sequences of potentials (see for example [CLT01], [Jen06], [Mor08], [CH10],
[Con16], [Boc18], [Jen19], [Zha19] and [BHVZ21]). We believe that this would give a
better understanding of more general nonadditive settings, such as the asymptotically
subadditive setup (see for example [GG16]).

4. Regularity of the nonadditive topological pressure: an affirmative answer to Ques-
tion C and Question D automatically gives important classes of asymptotically and
almost additive sequences F := (fn)n∈N where the nonadditive topological pressure
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t 7→ P (tF) is actually analytic, instead of having C1 regularity (or less) in general
(see [Rue78] and [BD09]).

5. Nonadditive multifractal analysis: answering positively Question C and Ques-
tion D also immediately guarantees higher-regularity of the entropy and dimension
spectra for important classes of asymptotically and almost additive sequences with
respect to some dynamical systems with hyperbolic behavior (see [BS01], [BSS02],
[BD09] and [BCW13]).

All these regularity issues indicate that, even with the information provided by Theo-
rem 1, the relationship between additive, asymptotically and almost additive sequences are
not yet completely understood. Notice that if all these questions are positively answered,
the almost (asymptotically) additive world and the additive world are in fact the ”same”
in a more complete sense, regarding many aspects of thermodynamic formalism, ergodic
optimization and multifractal analysis for discrete-time dynamical systems.

We note that a positive answer to Question B immediately implies a positive answer
to Question A. Moreover, for some subshifts of finite type, and some types of expanding
and hyperbolic setups, a positive answer to Question C (without the Hölder continuity
hypotheses on the sequences) also implies a positive answer to Question A.

In this work, we obtained the following characterization result for almost additive se-
quences of continuous functions:

Main result (Theorem 5). Let T : X → X be a continuous map on a compact metric
space X, satisfying the Closing Lemma and having a point with dense orbit. Let G =
(gn)n∈N be an almost additive sequence of continuous functions (with respect to T ) with
bounded variation. Then, the following are equivalent:

1. limn→∞ ∥gn∥∞/n = 0;

2. supn∈N ∥gn∥∞ <∞;

3. there exists K > 0 such that |gn(p)| ≤ K for all p ∈ X and n ∈ N with Tn(p) = p.

This result is proved without using the physical equivalence given by Theorem 1, and
it immediately shows that Question A is actually equivalent to Question B for any
topologically transitive map satisfying the Closing Lemma (see Corollary 6). This charac-
terization result is an improvement concerning the understanding of regularity problems
for nonadditive sequences, and it holds for setups including one-sided and two-sided full
shifts of finite type, topologically transitive subshifts of finite type, repellers of topologi-
cally trasitive C1 maps and locally maximal hyperbolic sets for topologically transitive C1

diffeomorphisms. We also applied our main result to characterize almost additive sequences
based on their equilibrium states and some cohomology relations, indicating that Theorem
5 works like a nonadditive version of the classical Livšic theorem ([Liv72]). Moreover, we
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show that Theorem 5 is optimal in the sense that it does not hold for asymptotically and
subadditive sequences in general.

By using our main characterization result together with an example given by Bárány,
Käenmäki and Morris in [BKM20] for the case of planar matrix cocycles, we are able to show
the existence of almost additive sequences of Hölder continuous functions with bounded
variation which are not physically equivalent to any additive sequence generated by a
Hölder continuous function. This result is new and gives a negative answer to Question C.
Furthermore, we also show a construction giving a negative answer to Question D for the
case of Hölder and Bowen regularity in general.

Since a considerable part of the classical thermodynamic formalism, additive multi-
fractal analysis and ergodic optimization for symbolic dynamics and some hyperbolic and
uniformly expanding maps is mostly centered around Hölder continuous potentials, which
is a natural class of functions to be considered in these setups ([Rue78], [KH12], [VO16],
[BS00], [BS01]. [BSS02], [Boc18], [Jen19]), our negative answers to Question C and
Question D go in the direction of revealing that almost (and asymptotically) additive
sequences of potentials do not always possess the same expected regularity properties as
the additive ones in general. Nevertheless, as far as we know, the more general Bowen
regularity problem in Question A still remains open even in the case of full shifts of finite
type.

The paper is organized as follows. Based on classical results and the physical equivalence
theorem obtained in [Cun20], we study and compare some different aspects of cohomolog-
ical notions for almost and asymptotically additive sequences. In the third section, we
obtain our main result (Theorem 5) and we show how it is related with some results in the
context of general matrix cocycles. As an application of our main theorem, we conclude
the third section showing how to classify almost additive sequences based on cohomology
and equilibrium measures. In the final section, we start with some examples showing se-
tups where we can always answer affirmatively the Questions A and B, and setups where
Question A is always positively answered but Question B cannot be affirmatively sat-
isfied. In the next subsection, building on an example given in [BKM20], we use again
our main result to exhibit examples of almost additive sequences of Hölder continuous
potentials satisfying the bounded variation property but not physically equivalent to any
additive sequence generated by any Hölder continuous potential, finally giving a negative
answer to Question C. In the following subsection, inspired by some recent developments
in the context of matrix cocycles, we use Theorem 5 to suggest a classification of almost
additive sequences based on the different types of physical equivalence relations with the
additive setup. We conclude our work showing some constructions of almost and asymp-
totically additive sequences of different types, giving a negative answer to Question D,
and also exploring some more general open problems concerning the Bowen and Walters
regularity.
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2 Some notions of cohomology for asymptotically additive
sequences of functions

Let T : X → X be a continuous map on a compact metric space X and (fn)n∈N be an
almost additive sequence of continuous functions (with respect to T ), that is, fn : X → R
is continuous for all n ∈ N and there exists C > 0 such that

−C + fn(x) + fm(Tn(x)) ≤ fm+n(x) ≤ C + fn(x) + fm(Tn(x)),

for all x ∈ X and m,n ∈ N.
We say that a function φ : X → R or the additive sequence (Snφ)n∈N satisfies the

Walters property or is a Walters function if for each κ > 0 there exists ε > 0 such that
for x, y ∈ X and n ∈ N, we have that d(T k(x), T k(y)) < ε for every k ∈ {0, ..., n − 1}
implies |Snϕ(x) − Snϕ(y)| < κ. Moreover, we say that a function ψ : X → R satisfies
the Bowen property or is a Bowen function if there exist M > 0 and ε > 0 such that for
x, y ∈ X and n ∈ N, we have that d(T k(x), T k(y)) < ε for every k ∈ {0, ..., n − 1} implies
|Snϕ(x)− Snϕ(y)| ≤ M . It is clear from the definitions that every function satisfying the
Walters property also satisfies the Bowen property.

Let T : X → X be a continuous map on a compact metric space X. The following
result is the Closing Lemma, a classical well known tool in hyperbolic dynamics (see for
example [KH12]).

Lemma 1. For every ε > 0 there exists δ > 0 such that if x ∈ X and n ∈ N satisfying
d(Tn(x), x) < δ, then there exists y ∈ X such that Tn(y) = y and d(T k(x), T k(y)) < ε for
all 0 ≤ k < n.

A continuous function f : X → R is said to be cohomologous to zero, or a coboundary
(with respect to some continuous map T ) when there exists a continuous function q : X → R
such that f(x) = q(T (x))− q(x) for all x ∈ X. We say that a function f is cohomologous
to another function g if f − g (or g − f) is a coboundary.

The following proposition is a more general version of the classical Livšic Theorem
originally obtained in [Liv72].

Proposition 2. Let T : X → X be a continuous map satisfying the Closing Lemma and
having a point with dense orbit. Let f : X → R be a continuous function satisfying the
Walters property. Then f is cohomologous to zero if and only if for every periodic point
x = Tn(x) we have Snf(x) = 0.

Observe that when a potential f is cohomologous to zero, by definition, there exists a
continuous function h : X → R such that f = h ◦ T − h, and this readily implies that∫

X
fdµ = 0 for all T -invariant measure µ. (1)
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Conversely, assume that condition (1) holds. In particular, whenever Tn(x) = x we also
have

∫
X fdν = 0 for the measure ν = 1

n

∑n−1
k=0 δTk(x), and consequently

0 =

∫
X
fdν = f(x) + f(T (x)) + · · ·+ f(Tn−1(x)) = Snf(x).

Therefore, by the Livšic Theorem (Proposition 2) we conclude that f is cohomologous to
zero. We just obtained the following result:

Corollary 3. f is cohomologous to zero if and only if
∫
X fdµ = 0 for every T -invariant

measure µ.

Let MT be the set of all T -invariant measures.

Proposition 4. Under the conditions of Proposition 2, f is cohomologous to zero if and
only if

lim
n→∞

1

n
∥Snf∥∞ = 0.

In particular,

lim
n→∞

1

n
∥Snf∥∞ = 0 if and only if sup

n∈N
∥Snf∥∞ <∞.

Proof. Suppose we have limn→∞
1
n∥Snf∥∞ = 0. By the Lebesgue’s dominated convergence

theorem and the Birkhoff’s ergodic theorem, we obtain

0 =

∫
X

lim
n→∞

1

n
Snfdµ =

∫
X
fdµ

for every µ ∈ MT . Hence, applying Corollary 3 we conclude that f is cohomologous to
zero. Conversely, if f is cohomologous to zero, there exists a continuous function h such
that f(x) = h(T (x))−h(x), which implies that Snf(x) = h(Tn(x))−h(x) for every n ∈ N.
Consequently, ∥Snf∥∞ ≤ 2∥h∥∞ < ∞ for every n ∈ N, and thus, limn→∞

1
n∥Snf∥∞ = 0.

In this setting, Proposition 4 indicates a property for additive sequences that is equiv-
alent to the notion of cohomology for functions. Actually, a notion of cohomology for
asymptotically and almost additive sequences of continuous functions was introduced by
Bomfim and Varandas in [BV15].

Let X be a compact metric space and T : X → X be a continuous map. By the density
of Hölder continuous functions on the space of continuous functions, one can show that for
each asymptotically additive sequence of continuous functions F = (fn)n∈N, there exists a
family of Hölder continuous functions (fε)ε∈(0,1) such that

lim
n→∞

1

n
∥fn − Snfε∥∞ < ε for any ε > 0

(see Proposition 2.3 in [BV15]). The family (fε)ε∈(0,1) is called an admissible family for
the sequence F.
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Definition 1 ([BV15, Definition 2.4]). Let F be an asymptotically or almost additive
sequence of functions with respect to a map T : X → X. The sequence F is said to be
cohomologous to a constant if there exists an admissible family (fε)ε>0 for F such that fε
is cohomologous to a constant for every small ε ∈ (0, 1), that is, there exists a constant
cε ∈ R and a continuous function uε : X → R so that fε = uε ◦ T − uε + cε.

Using this definition, the following result was obtained.

Lemma 2 ([BV15, Lemma 2.5]). An asymptotically additive sequence F is cohomologous
to a constant if and only if (fn/n)n∈N converges uniformly to a constant. In particular, F
is cohomologous to zero if and only if limn→∞ ∥fn∥∞/n = 0.

Now, based on Theorem 1, we can give a simpler definition of cohomology for asymp-
totically additive sequences.

Definition 2. We say that an almost additive or asymptotically additive sequence of
functions F = (fn)n∈N is cohomologous to a constant if there exists a continuous function
f cohomologous to a constant and such that

lim
n→∞

1

n
∥fn − Snf∥∞ = 0.

A reasonable thing to ask is if the two notions of cohomology are equivalent. In order
to answer this, we have the following.

Lemma 3. Using Definition 2, F is cohomologous to a constant if and only if
(fn

n

)
n∈N

converges uniformly to a constant.

Proof. Suppose F is physically equivalent to the additive sequence (Snf)n∈N, where f is
cohomologous to a constant c ∈ R, that is, there exists a continuous function h : X → R
such that f − c = h ◦ T − h. This implies that Snf = h ◦ Tn − h + cn for every n ∈ N.
Then,

lim
n→∞

∥∥∥∥fnn − c

∥∥∥∥
∞

= lim
n→∞

∥∥∥∥fnn − Snf

n
+
h ◦ Tn − h

n

∥∥∥∥
∞

≤ lim
n→∞

1

n
∥fn − Snf∥∞ + lim

n→∞

1

n
∥h ◦ Tn − h∥∞ = 0

Conversely, let the sequence
(fn

n

)
n∈N converge to a constant c ∈ R. Then

lim
n→∞

1

n
∥fn − Snc∥∞ = lim

n→∞
∥ 1
n
fn − c∥∞ = 0

and, by Definition 2, F is cohomologous to a constant.
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From Lemma 3 together with Lemma 2, we conclude that Definition 2 is, in fact,
equivalent to Definition 1. Based on this, we can say that an asymptotically (or almost)
additive sequence of continuous functions F = (fn)n∈N is cohomologous to zero if and only
if the sequence (fn/n)n∈N is uniformly convergent to zero.

For the additive case, a continuous function f : X → R is cohomologous to zero if
and only if limn→∞

1
n∥Snf∥∞ = 0 under the conditions of Livšic Theorem. This implies

that, in general, the classical definition of cohomology for a function is way stronger than
the one we are suggesting for nonadditive sequences in Definition 2. On the other hand,
Proposition 4 also suggests a definition of cohomology for nonadditive sequences which is
still weaker than the classical one but much stronger than Definition 2:

Definition 3. We say that an almost additive or asymptotically additive sequence of
functions F = (fn)n∈N is cohomologous to a constant if there exists a continuous function
f cohomologous to a constant and such that

sup
n∈N

∥fn − Snf∥∞ <∞.

In this sense, F is cohomologous to zero if and only if F is uniformly bounded.
In the next section, our main result gives a setup where the definitions 1, 2 and 3 are

equivalent for almost additive sequences (see Theorem 5). On the other hand, considering
the same setup, Example 1 shows that definition 3 is not compatible with definitions 1 and
2 for asymptotically additive sequences.

3 A Livšic-type theorem for almost additive sequences

Let X be a compact metric space and T : X → X a continuous map. We say that a
sequence of functions F = (fn)n∈N has bounded variation if there exists ε > 0 such that

sup
n∈N

sup{|fn(x)− fn(y)| : dn(x, y) < ε} <∞,

where dn(x, y) := max{d(T k(x), T k(y)) : 0 ≤ k ≤ n − 1}. Moreover, we say that F has
tempered variation if

lim sup
ε→0

lim
n→∞

γn(ε)

n
= 0,

where γn(ε) := sup{|fn(x)− fn(y)| : dn(x, y) < ε}.
We note that if ϕ : X → R satisfies the Bowen property then the additive sequence

(Snϕ)n∈N has bounded variation.
The Walters property for functions (additive sequences) also can be extended naturally

to the nonadditive case. We say that a sequence of functions (fn)n∈N satisfies the Walters
property if for each κ > 0 there exists ε > 0 such that for x, y ∈ X and n ∈ N, we have
that d(T k(x), T k(y)) < ε for every k ∈ {0, ..., n− 1} implies |fn(x)− fn(y)| < κ.
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As in the additive case, it is clear that a sequence satisfying the Walters property also
satisfies the Bowen property. Moreover, for subshifts of finite type, uniformly expanding
maps and hyperbolic sets for diffeomorphisms, the space of Hölder continuous functions is
contained in the class of functions satisfying the Walters property (see for example [Wal78],
[Bou02] and Proposition 20.2.6 in [KH12]).

A point x ∈ X is said to be transitive (with respect to a map T ) if {Tn(x) : n ∈ N} = X.
On the other hand, we say that a map T : X → X is topologically transitive if for every
pair of non-empty open subsets U, V ⊂ X there exists n ∈ N such that Tn(U) ∩ V ̸= ∅.
In particular, when X is a compact metric space one can show that T : X → X admits a
transitive point if and only if T is topologically transitive (see for example [Sil92]).

The following theorem is our main result.

Theorem 5. Let T : X → X be a continuous map satisfying the Closing Lemma and having
a point with dense orbit. Let G = (gn)n∈N be an almost additive sequence of continuous
functions (with respect to T ) with bounded variation. Then, the following are equivalent:

1. limn→∞ ∥gn∥∞/n = 0;

2. supn∈N ∥gn∥∞ <∞;

3. there exists K > 0 such that |gn(p)| ≤ K for all p ∈ X and n ∈ N with Tn(p) = p.

The following result is a direct consequence of Theorem 5.

Corollary 6. Let F = (fn)n∈N be an almost additive sequence of continuous functions with
respect to T : X → X and with bounded variation. Then, a continuous function f : X → R
such that (Snf)n∈N has bounded variation satisfies

lim
n→∞

1

n
∥fn − Snf∥∞ = 0 if and only if sup

n∈N
∥fn − Snf∥∞ <∞.

In particular, if (Snf)n∈N does not have bounded variation we have

sup
n∈N

∥fn − Snf∥ = ∞.

Notice that Corollary 6 readily implies that Question A is in fact equivalent to Ques-
tion B for topologically transitive maps satisfying the Closing Lemma. We also note that
Theorem 5 is an extension of Proposition 4 to the case of almost additive sequences having
bounded variation.

Remark. Observe that Proposition 4 asks for the sequence of potentials to have the
Walters property, which is stronger than the bounded variation condition. This is because
the classical cohomology result obtained for a single potential is also stronger than the
uniformly bounded one obtained in Theorem 5. As we shall see on section 3.1, Theorem 5
is also particularly related to Theorem 1.2 in [Kal11], where control over the periodic data
implies control over the full data.
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In order to prove Theorem 5, let us first obtain a key auxiliary result.

Lemma 4. Let T : X → X be a continuous map and let H = (hn)n∈N be an almost
additive sequence of continuous functions with uniform constant C > 0 and such that
limn→∞ ∥hn∥∞/n = 0. Then

1. for every k-periodic point x0 ∈ X, we have supq∈N |hqk(x0)| ≤ C;

2. for every periodic point x0, there exists a constant L ≥ 0 (only depending on the
period) such that supn∈N |hn(x0)| ≤ L;

3. We have

sup
µ∈MT

∣∣∣∣ ∫
X
hndµ

∣∣∣∣ ≤ C for all n ∈ N.

Proof. Since the sequence H is almost additive, there exists C > 0 such that

hn + hn ◦ Tn − C ≤ h2n ≤ hn + hn ◦ Tn + C

for every n ∈ N. One can use induction to show that

p−1∑
i=0

hn(T
ni(x))− (p− 1)C ≤ hpn(x) ≤

p−1∑
i=0

hn(T
ni(x)) + (p− 1)C (2)

for every n, p ∈ N and x ∈ X.
Let us assume without loss of generality that T k(x0) = x0 for some k ∈ N. If n = qk

for some q ∈ N, then Tni(x0) = x0 and so

lim
p→∞

1

p

p−1∑
i=0

hn(T
ni(x0)) = hn(x0).

On the other hand, since limn→∞ ∥hn∥∞/n = 0, we have

lim
p→∞

hpn(x)

pn
= 0

and so it follows from (2) that
−C ≤ hn(x0) ≤ C, (3)

concluding the proof of item 1.
Now consider the case n = qk + r, with 0 < r < k. Let

A = min{hr(x0) : r < k} and B = max{hr(x0) : r < k}. (4)

11



By the almost additivity of the sequence H together with (3) and (4), we have

−2C +A ≤ −C + hqk(x0) + hr(T
qk(x0)) ≤ hn(x0)

and
hn(x0) ≤ hqk(x0) + hr(T

qk(x0)) + C ≤ 2C +B.

Therefore,
L2 := min{A− 2C,−C} ≤ hn(x0) ≤ max{B + 2C,C} := L1

for every n ∈ N. Taking L := max{|L1|, |L2|}, the item 2 is proved.
Now let us prove item 3. If µ is a T -invariant probability, then it is also Tn-invariant

for every n ∈ N and, by using that limn→∞ ∥hn∥∞/n = 0 in the inequalities 2 together
with the Birkhoff’s ergodic theorem, we obtain that

−C ≤
∫
X

lim
p→∞

1

p

k−1∑
i=1

gn(T
in(x))dµ(x) =

∫
X
gndµ ≤ C

for every n ∈ N. Since µ ∈ MT is arbitrary, the lemma is proved.

Proof of Theorem 5. Since G has bounded variation, there exists ε > 0 such that

M := sup
n∈N

sup{|gn(x)− gn(y)| : dn(x, y) < ε} <∞. (5)

Let us start proving that 3 implies 2. Suppose that there exists K > 0 such that
|gn(p)| ≤ K for all p ∈ X and n ∈ N with Tn(p) = p. Let ω ∈ X be a transitive point
and let δ > 0 be the number given by the Closing Lemma (Lemma 1). Since the orbit
of ω is dense, there exists a number L(ω, δ) ∈ N such that for all x ∈ X and n ∈ N
there exists some k ∈ {0, 1, ..., L(ω, δ)} with d(Tn(x), T k(ω)) < δ. Letting n > L(ω, δ),
in particular there exists k′ ∈ {0, 1, ..., L(ω, δ)} such that d(Tn(ω), T k′(ω)) < δ, that is,
d(Tn−k′(T k′(ω)), T k′(ω)) < δ.

By the Closing Lemma, there exists a point p ∈ X with Tn−k′(p) = p and such that
dn−k′(T

k′(ω), p) < ε. Now applying the bounded variation condition (5) we have that

|gn−k′(T
k′(ω))− gn−k′(p)| ≤M,

which implies that |gn−k′(T
k′(ω))| ≤M + |gn−k′(p)| ≤M +K. This together with almost

additivity gives that

|gn(ω)| = |g(n−k′)+k′(ω)| ≤ |gk′(ω)|+ |gn−k′(T
k′(ω))|+ C

≤ max
k∈{0,1,...,L(ω,δ)}

|gk(ω)|+M +K + C := K ′.

12



Since n > L(ω, δ) was arbitrary, we have |gn(ω)| ≤ K ′ for all n ∈ N. By using almost
additivity again, we also have that

|gn(T k(ω)) + gk(ω)− gn+k(ω)| ≤ C for all n, k ∈ N,

which gives

|gn(T k(ω))| ≤ |gk(ω)|+ |gn+k(ω)|+ C ≤ 2K ′ + C for all n, k ∈ N.

Now let x ∈ X. Since ω is transitive, there exists a sequence (ωq)q≥1 ⊂ {Tn(ω) : n ∈ N}
such that limq→∞ ωq = x. Since every function gn is continuous, we obtain that

|gn(x)| = lim
q→∞

|gn(ωq)| ≤ 2K ′ + C.

Therefore, by the arbitrariness of x, we conclude that supn∈N ∥gn∥∞ ≤ 2K ′ + C < ∞
as desired. It is immediate that 2 implies 1. By Lemma 4, it follows that 1 implies 3 and
the theorem is proved.

Theorem 5 does not hold for asymptotically additive nor subadditive sequences in
general. In order to illustrate this, we give the following simple example.

Example 1. Let T : X → X be a continuous map and let F = (fn)n∈N be the sequence
given by fn(x) :=

√
n for every n ∈ N and every x ∈ X. It is clear that F has bounded

variation and is asymptotically additive and also subadditive with respect to T . Moreover,
we have that limn→∞ ∥fn∥∞/n = 0 but supn∈N ∥fn∥∞ = ∞. Actually, we also have

sup
n∈N

∥fn − Snf∥∞ = ∞ for every function f : X → R.

In fact, let us suppose by contradiction that there exist a continuous function f : X → R
and L > 0 such that supn∈N ∥fn − Snf∥∞ ≤ L. Given x ∈ X, we obtain

sup
n∈N

|fn(x)− Snf(x)| = sup
n∈N

|
√
n− Snf(x)| ≤ L.

Setting an := f(Tn−1(x)), we have

√
n− L ≤ a1 + · · ·+ an ≤

√
n+ L. (6)

Since x is arbitrary, we obtain
√
n − L ≤ ak+1 + · · · + ak+n ≤

√
n + L for every k ∈ N.

Moreover, since these inequalities hold for every sequence with length n, we have

p(
√
n− L) ≤ a1 + · · ·+ apn ≤ p(

√
n+ L) (7)

for every p ∈ N. On the other hand, it follows directly from (6) that

(
√
pn− L) ≤ a1 + · · ·+ apn ≤ (

√
pn+ L) for every p ∈ N. (8)

13



Comparing (7) with (8) we obtain p(
√
n− L) ≤ √

pn+ L, which implies that

√
n− L ≤

√
n

√
p
+
L

p
for every p ∈ N.

By letting p→ ∞ we obtain
√
n−L ≤ 0 for every n ∈ N, which is clearly a contradiction.

Therefore, supn∈N ∥fn − Snf∥∞ = ∞ for every function f : X → R, as we claimed.

Example 1 shows that the definition 3 is not equivalent to definition 2 for asymptotically
additive sequences in general. Moreover, this also implies that Theorem 5 has an optimal
nonadditive setup in the sense that it cannot be extended to more general sequences, such
as asymptotically additive and subadditive ones.

3.1 Matrix cocycles

LetX be a compact metric space and T : X → X a continuous map. Moreover, letGL(d,R)
be the set of all invertible d × d matrices. A continuous map A : X × N → GL(d,R) is
called a linear cocycle over T if for all m,n ∈ N and x ∈ X we have:

1. A(x, 0) = Id;

2. A(x, n+m) = A(Tm(x), n)A(x,m).

Every cocycle is generated by a function A : X → GL(d,R), that is,

A(x, n) = A(Tn−1(x))...A(T (x))A(x) for all n ∈ N and x ∈ X.

Assume that the cocycle A is generated by a continuous function A : X → GL(d,R)
which takes values in the set of matrices d× d with strictly positive entries. Moreover, we
consider the pseudo-norm on GL(d,R) defined by ∥A∥ =

∑d
i,j=1 |aij |, denoting by aij the

entries of A.
Now we consider the sequence of functions FA := (an)n∈N defined by

an(x) = log ∥A(x, n)∥ for all n ∈ N and x ∈ X. (9)

It follows from Lemma 2.1 in [FL02] that the sequence FA is almost additive with
respect to T .

Extending the definitions for derivative cocycles in [BG06], we say that the cocycle A

has tempered distortion if for some ε > 0

lim sup
n→∞

1

n
log sup

{
∥A(x, n)A(y, n)−1∥ : z ∈M and x, y ∈ Bn(z, ε)

}
= 0

Moreover, A is said to have bounded distortion if

sup
{
∥A(x, n)A(y, n)−1∥ : z ∈M and x, y ∈ Bn(z, ε)

}
<∞
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for some ε > 0. It is clear that bounded distortion implies tempered distortion.
Now observe that

∥A(x, n)A(x, n)−1∥ = ∥Id∥ = d

for every (x, n) ∈ X × N, which implies that

∥A(x, n)−1∥ ≥ d∥A(x, n)∥−1.

Then

∥A(x, n)A(y, n)−1∥ ≥ M

d
∥A(x, n)∥ · ∥A(y, n)−1∥ ≥M∥A(x, n)∥ · ∥A(y, n)∥−1, (10)

where M > 0 is the constant satisfying

1 ≥
min(i,j) aij

max(i,j) aij
≥M,

which exists because, by assumption, the entries of A are all strictly positive.
So, it follows directly from (10) that∣∣log ∥A(x, n)∥ − log ∥A(y, n)∥

∣∣ ≤ − logM + log ∥A(x, n)A(y, n)−1∥.

In particular, for z ∈ X and ε > 0 we have

sup
x,y∈Bn(z,ε)

|an(x)− an(y)| ≤ − logM + log sup
x,y∈Bn(z,ε)

∥A(x, n)A(y, n)−1∥.

Hence, if the cocycle A has tempered distortion, then the sequence FA has tempered
variation, and if A has bounded distortion, then FA has bounded variation.

A cocycle A : X ×N → GL(d,R) is said to satisfy domination if there exist C > 0 and
λ > 0 and a splitting Rd = E(x)⊕ F (x) such that

∥A(x, n)u∥ ≥ Ceλn∥A(x, n)v∥

for all unitary vectors u ∈ E(x) and v ∈ F (x). For linear cocycles, one also can show that
domination implies almost additivity of the sequence FA defined in (9) (see for example
[BG09] and [BKM20] for more information on domination and almost additivity in the
case of cocycles).

Let GL+(d,R) ⊂ GL(d,R) be the set of all matrices with strictly positive entries. We
have the following application of Theorems 5, which is a particular version of one of the
main results in [Kal11]:

Proposition 7. Let T : X → X be a topologically transitive continuous map on a compact
metric space X and satisfying the Closing Lemma. Let A : X → GL+(d,R) be a continuous
function which generates a cocycle A : X × N → GL+(d,R) with bounded distortion or let
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A : X×N → GL(d,R) be a cocycle satisfying domination with bounded distortion. Suppose
there exists a compact set Ω ⊂ GL(d,R) such that A(p, n) ⊂ Ω for all p ∈ X and n ∈ N
with Tn(p) = p. Then there exists a compact set Ω̃ such that A(x, n) ⊂ Ω̃ for all x ∈ X
and n ∈ N.

Proof. By the hypotheses, FA = (an)n∈N given by an(x) := log ∥A(x, n)∥ is an almost
additive sequence of continuous functions. Since the cocycle A has bounded distortion, the
sequence FA has bounded variation. Now suppose there exists a compact Ω ⊂ GL(d,R)
where A(p, n) ⊂ Ω for all p ∈ X and n ∈ N with Tn(p) = p. Since the map A(p, n) 7→
log ∥A(p, n)∥ is continuous, there exists K > 0 such that an(p) ∈ [−K,K] for all p ∈ X
and n ∈ N with Tn(p) = p. By Theorem 5, there exists a constant K̃ > 0 such that

supn∈N ∥an∥∞ ≤ K̃. In particular, this implies that e−K̃ ≤ ∥A(x, n)∥ ≤ eK̃ for all x ∈ X
and n ∈ N.

Therefore

∥A(x, n)− Id∥ ≤ ∥A(x, n)∥+ ∥Id∥ ≤ eK̃ + d for all x ∈ X and n ∈ N,

and the result is proved.

Notice that when the function A : X → GL(d,R) is Hölder continuous, the cocycle
A has in fact the bounded distortion property (see Proposition 5.1 in [Kal11]). Then,
Proposition 7 is a particular version of Theorem 1.2 in [Kal11] for the case of strictly
positive cocycles (or cocycles with domination) satisfying the bounded distortion property.

Remark. For a general cocycle, the sequence FA defined in (9) is only subadditive. Fol-
lowing as in the proof of Proposition 7, one can check that Theorem 1.2 in [Kal11] also gives
an important class of subadditve sequences of continuous functions with bounded variation
such that a uniform control over the periodic data implies a uniform control over all data.
Based on this, one can naturally ask for which other classes of subadditive sequences this
result can be extended.

3.2 A characterization of almost additive sequences with the same equi-
librium measures

In this section, we will apply Theorem 5 to see how we can identify sequences with the
same equilibrium measures just based on the information about the periodic data of the
system.

Let T : X → X be a continuous map of a compact metric space, and let F = (fn)n∈N be
an almost additive sequence of continuous functions with tempered variation (weaker than
bounded variation condition). We have the following variational principle (see [Bar06] and
[Mum06]:

PT (F) = sup
µ∈MT

(
hµ(T ) + lim

n→∞

1

n

∫
X
fndµ

)
,
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where PT (F) is the nonadditive topological pressure of F with respect to T introduced in
[Bar96], and hµ(T ) is the Kolmogorov-Sinai entropy. A measure ν ∈ MT is said to be an
equilibrium measure for F (with respect to T ) if the supremum is attained in ν, that is,

PT (F) = hν(T ) + lim
n→∞

1

n

∫
X
fndν.

When F is an additive sequence generated by a single continuous function f : X → R, one
can easily see that

PT (F) = PT (f) and lim
n→∞

1

n

∫
X
fndµ =

∫
X
fdµ for all µ ∈ MT ,

where PT (f) is the classical (additive) topological pressure of f with respect to the map T .
In this case, we recover the classical notions of topological pressure, variational principle
and equilibrium measures for functions. For asymptotically and almost additive sequences,
Theorem 1 allows us to obtain the notion of nonadditive topological pressure and variational
principle directly from the classical theory.

It was introduced in [Bar06] a definition of Gibbs measures with respect to almost
additive sequences using Markov partitions. One also can define Gibbs measures with
respect to almost additive sequences in a more general way, without the requirement of
Markov partitions. We say that µ (not necessarily T -invariant) is a Gibbs measure with
respect to F if for each ε > 0 there exists a constant K = K(ε) ≥ 1 such that

K−1 ≤ µ(Bn(x, ε))

exp[−nPT (F) + fn(x)]
≤ K

for all x ∈ X and n ∈ N, where Bn(x, ε) := {y ∈ X : dn(x, y) < ε}. These two notions of
Gibbs measures are equivalent when the system admits Markov partitions with arbitrar-
ily small diameter, as in the case of locally maximal hyperbolic sets or repellers for C1

diffeomorphisms (see for example [Bow75a]).
In the case of shifts σ : ΣN → ΣN, the definition is simpler. A measure µ on ΣN is said

to be Gibbs with respect to F = (fn)n∈N when there exists a constant K ≥ 1 such that

K−1 ≤ µn(Ci1...in)

exp(−nPσ(F) + fn(x))
≤ K (11)

for all x ∈ Ci1...in and n ∈ N, where Ci1...in is the set

Ci1...in := {y = (j1j2 · · · ) ∈ ΣN : j1 = i1, . . . , jn = in}.

These definitions are natural nonadditive versions of the classical Gibbs definitions with
respect to a single continuous function (see definition (16)).

Now let’s recall the definition of uniformly expanding maps and repellers. Let M be a
Riemannian manifold, T : M → M a C1 map, and let Λ ⊂ M be a compact T -invariant
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set, that is, T−1(Λ) = Λ. The map T is said to be uniformly expanding on Λ if there exist
constants c > 0 and λ > 1 such that

∥dxfnv∥ ≥ cλn∥v∥ for all x ∈ Λ, n ∈ N and v ∈ TxM.

In this case, the set Λ is called a repeller of T . The following result is a criteria for
uniqueness of equilibrium measures for nonadditive sequences.

Proposition 8 ([Bar06, Theorem 5]). Let Λ be a repeller of a C1 topologically mixing map
T : Λ → Λ, and let F = (fn)n∈N be an almost additive sequence of continuous functions
on Λ with bounded variation. Then F admits a unique equilibrium measure, which also
satisfies the Gibbs property with respect to F.

Proposition 8 also holds in the case of full shifts of finite type, topologically mixing
subshifts of finite type and locally maximal hyperbolic sets for topologically mixing C1

diffeomorphisms (see also Theorem 6 in [Mum06]).
In the following result, we use Theorem 5 to obtain a characterization of almost additive

sequences based on equilibrium measures.

Theorem 9. Let Λ be a repeller of a C1 topologically mixing map T : Λ → Λ. Let
F = (fn)n∈N and G = (gn)n∈N be two almost additive sequences of continuous functions
with bounded variation. Then F and G have the same equilibrium measure if and only if
there exists a constant K > 0 such that |fn(p)−gn(p)−n(P (F)−P (G))| ≤ K for all p ∈ X
and n ∈ N with Tn(p) = p.

In order to prove this, we first need the following general result:

Lemma 5. Let X be a compact metric space, T : X → X a continuous map and let
F = (fn)n∈N be an asymptotically additive sequence of continuous functions (with respect
to T ). Then

lim
n→∞

1

n
∥fn∥∞ = sup

µ∈MT

∣∣∣∣ lim
n→∞

1

n

∫
X
fndµ

∣∣∣∣.
Proof. Proposition 2.1 in [IP84] together with Lemma 2.2 in [Cun20] gives that

lim
n→∞

1

n
∥Snf∥∞ = sup

µ∈MT

∣∣∣∣ ∫
X
fdµ

∣∣∣∣ (12)

for all continuous functions f : X → R. By Theorem 1, there exists a continuous function
f such that (Snf)n∈N is physically equivalent to F. Hence, in particular,

lim
n→∞

1

n
∥fn∥∞ = lim

n→∞

1

n
∥Snf∥∞ and lim

n→∞

1

n

∫
X
fndµ =

∫
X
fdµ for all µ ∈ MT .

This together with (12) yields the desired result.
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Proof of Theorem 9. If we suppose |fn(p)− gn(p)−n(P (F)−P (G))| ≤ K for all p ∈ X
and n ∈ N with Tn(p) = p, Theorem 5 gives that supn∈N ∥fn−gn−n(P (F)−P (G))∥∞ <∞.
By the definition of nonadditive topological pressure and Lemma 5, respectively, we have

P (F) = P (H) and lim
n→∞

1

n

∫
X
fndµ = lim

n→∞

1

n

∫
X
hndµ for all µ ∈ MT .

where H = (hn)n∈N is the sequence hn := gn+n(P (F)−P (G)). This readily implies that F
and H have the same equilibrium measures. Since H and G also share the same equilibrium
measure, the same is true for F and G.

Now let’s prove the converse. By Proposition 8, the sequences F and G have unique
equilibrium measures, and they satisfy the Gibbs property. Now suppose these equilibrium
measures are the same unique measure ν ∈ MT . By the Gibbs property, for each ε > 0
there exist constants K1 = K1(ε) ≥ 1 and K2 = K2(ε) ≥ 1 such that

K−1
1 ≤ ν(Bn(x, ε))

exp[−nPT (F) + fn(x)]
≤ K1 and K−1

2 ≤ ν(Bn(x, ε))

exp[−nPT (G) + gn(x)]
≤ K2

for all x ∈ X and n ∈ N. This implies that

K−1
1 K−1

2 ≤ exp[fn(x)− gn(x)− n(PT (F)− PT (G))] ≤ K1K2

for all x ∈ X and n ∈ N. Then,

∥fn − gn − n(PT (F)− PT (G))∥∞ ≤ log(K1K2).

In particular, we have that |fn(p)− gn(p)− n(PT (F)− PT (G))| ≤ log(K1K2) for all p ∈ X
and n ∈ N with Tn(p) = p, as desired.

Remark. By the equivalences in Theorem 5, the statement of Theorem 9 also could be: F
and G have the same equilibrium measure if and only if the sequence F−G is cohomologous
to the constant PT (F) − PT (G), in the sense of definitions 1, 2 and 3. In this context,
Theorem 9 can be seen as a nonadditive counterpart of some classical additive results, for
example, Theorem 12.2.3 in [VO16] and Propositions 20.3.9 and 20.3.10 in [KH12].

Remark. Based on the different versions of results concerning the uniqueness of equi-
librium measures for almost additive sequences, Theorem 9 also holds for topologically
mixing subshifts of finite type, locally maximal hyperbolic sets for topologically mixing C1

diffeomorphisms, and repellers of topologically mixing C1 maps (see [Bar06] and [Mum06]).

4 Regularity of almost and asymptotically additive sequences
of continuous potentials

In this section we will address the regularity problem for nonadditive sequences. We will
start with some simpler cases in the non-hyperbolic context, then we will eventually attack
and discuss the hyperbolic and related setups.
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4.1 Non-hyperbolic setups

In this subsection, we will consider maps where the periodic points are dominant and there
is no transitive data, and setups where the transitive points are dominant and we have no
periodic data.

Let us now begin with an example of a setup where Question A and Question B can
always be affirmatively answered.

Example 2. (Rational rotations) Let Rα : Tn → Tn be the rational rotation on the n-
torus, that is, Rα(x) = x + α mod 1 with α ∈ Qn. Considering F := (fn)n∈N any almost
additive sequence of continuous functions with respect to Rα, by Theorem 1 there exists a
continuous function f : Tn → R such that limn→∞ ∥fn − Snf∥∞/n = 0. Since every point
is periodic with the same period, by Lemma 4 there exists a constant L > 0 such that
supn∈N ∥fn − Snf∥∞ ≤ L < ∞. Notice that this uniform bound exists regardless of the
sequence F having bounded variation. Moreover, in this case, F has bounded variation if
and only if (Snf)n∈N has bounded variation.

Remark. Example 2 is actually more general. In fact, by Lemma 4 we obtain the same
result for maps having at least a dense set of periodic points with a bounded period. This
class of examples include periodic maps in general.

Let us now investigate what happens with some systems without periodic points.

Example 3. (Uniquely ergodic maps) Let X be a compact metric space and consider
T : X → X a uniquely ergodic map. Let F := (fn)n∈N be an almost additive sequence of
continuous functions with respect to T and denote by ν the unique T -invariant measure.
Then, in particular

lim
n→∞

1

n

∥∥∥∥Snϕ− n

∫
X
ϕdν

∥∥∥∥
∞

= 0 for all continuous functions ϕ : X → R. (13)

By Theorem 1, there exists a continuous function f : X → R such that

lim
n→∞

∥fn − Snf∥∞/n = 0.

This together with (13) yields

lim
n→∞

1

n

∥∥∥∥fn − n

∫
X
fdν

∥∥∥∥
∞

≤ lim
n→∞

1

n
∥fn − Snf∥∞ + lim

n→∞

1

n

∥∥∥∥Snf − n

∫
X
fdν

∥∥∥∥
∞

= 0.

Hence, in the case of uniquely ergodic maps, there always exists a continuous function
f : X → R such that

lim
n→∞

1

n

∥∥∥∥fn − n

∫
X
fdν

∥∥∥∥
∞

= 0,

that is, the function given by Theorem 1 can be taken as the constant
∫
X fdν.

Observe that the additive sequence (Sn
∫
X fdν)n∈N has bounded variation, and in this

setup we can always answer Question A affirmatively.
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The following classical result is due to Gottshalk and Hedlund (see for example Theorem
4.2 in [FG21]).

Proposition 10. Let X be a compact metric space, T : X → X a homeomorphism such
that every orbit is dense, and φ : X → R a continuous function. Then the following
assertions are equivalent:

1. there exists a continuous function q : X → R such that φ = q ◦ T − q;

2. there exists a point x0 ∈ X such that supn∈N |Snφ(x0)| <∞.

3. supn∈N ∥Snφ∥∞ <∞.

In the following simple example, we show a setup where Theorem 5 does not hold even
in the additive case and with any strong regularity involved.

Example 4. (Irrational rotations) Let Rα : T → T be the irrational rotation on the torus,
that is, Rα(x) = x+ α mod 1 with α ∈ R/Q. The map Rα is a uniquely ergodic (and also
minimal) homeomorphism. In addition, let f : T → R be a continuous function which is
not cohomologous to any constant. It follows in particular from Example 3 that

lim
n→∞

1

n

∥∥∥∥Snf − n

∫
T
fdν

∥∥∥∥
∞

= 0,

where ν is the Lebesgue measure, that is, the unique Rα-invariant measure on T.
On the other hand, Proposition 10 readily implies that supn∈N ∥Snf−n

∫
T fdν∥∞ = ∞,

regardless of the regularity of f .

Observe that Example 4 also demonstrate that Question B cannot be positively an-
swered for all setups in general.

Even though the Examples 2, 3 and 4 are interesting from a pure theoretical point of
view, they are not as attractive as examples involving setups with some kind of hyper-
bolicity, where we can find the most strong applications in thermodynamic formalism and
dimension theory in general. We will address the hyperbolic and related setups in the next
sections.

4.2 Hölder regularity of almost additive sequences

For the sake of simplicity, in this section we are considering only the case of left-sided full
shifts of finite type, but most of the results can be properly obtained for two-sided full shifts
of finite type, topologically mixing subshifts of finite type, repellers of topologically mixing
C1 maps and locally maximal hyperbolic sets for topologically mixing C1 diffeomorphisms.

We start with a simple but useful auxiliary result.
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Lemma 6. Let X be a topological space and T : X → X a map. Let A := (an)n∈N and
B := (bn)n∈N be two sequences of functions such that supn∈N ∥an − bn∥ < ∞. Then, A is
almost additive with respect to T if and only if B is almost additive with respect to T .

Proof. Let ξn := an − bn for all n ∈ N. By hypotheses, there exists L > 0 such that
supn∈N ∥ξn∥∞ ≤ L. Suppose A is almost additive with respect to T (and with constant
C > 0). Then, for all m,n ∈ N we have

bn + bm ◦ Tn − (3L+ C) = an − ξn + am ◦ Tn − ξm ◦ Tn − (3L+ C)

= an + am ◦ Tn − C + (−ξn − L) + (−ξm ◦ Tn − L)− L

≤ an+m − L ≤ an+m − ξn+m = bn+m.

Analogously, we also have

bn+m ≤ bn + bm ◦ Tn + (3L+ C) for all m,n ∈ N.

Hence, the sequence B is almost additive (with respect to T ) and with constant 3L+C > 0.
The same argument works to prove the almost additivity of sequence A, and the result is
proved.

Let Σ = {1, . . . , k} be a finite alphabet and let ΣN be the space of sequences x =
(i1i2 · · · ) with in ∈ Σ for every n ∈ N. We define the left-sided full shift map σ : ΣN → ΣN

by σ(i1i2i3 · · · ) = (i2i3i4 · · · ). Given a probability measure µ on ΣN, for any fixed n-tuple
(j1, . . . , jn) ∈ Σn we write

µn(Cj1...jn) := µ({x = (i1i2 · · · ) ∈ ΣN : i1 = j1, . . . , in = jn}).

A probability measure µ is said to be quasi-Bernoulli if µ1(Cj) > 0 for every j ∈ Σ, and if
there exists a constant C ≥ 1 such that

C−1 ≤
µn+m(Cj1···jn+m)

µn(Cj1···jn)µm(Cjn+1···jn+m)
≤ C

for every m,n ≥ 1 and every j1, . . . , jn+m ∈ Σ. When one can take C = 1, the measure µ
is said to be Bernoulli.

Given x = (i1i2...) ∈ ΣN and n ≥ 1, consider the set

Ci1...in(x) := {y = (j1j2 · · · ) ∈ ΣN : j1 = i1, . . . , jn = in}.

Now given an arbitrary measure ν on ΣN, consider the sequence of continuous functions
F := (fn)n∈N given by fn(x) := log ν(Ci1...in(x)) for all n ∈ N and every x ∈ ΣN. It is easy
to see that if ν is quasi-Bernoulli then F is almost additive. In this case, we say that the
sequence F is generated by the quasi-Bernoulli measure ν.

Let Bow(ΣN, σ) be the vector space of continuous functions satisfying the Bowen prop-
erty with respect to the shift σ : ΣN → ΣN.

Now lets us show how we can apply Theorem 5 to finally give a negative answer to
Question C:
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Theorem 11. Let σ : ΣN → ΣN be the left-sided full shift. Then

• there exists an almost additive sequence of continuous functions generated by a quasi-
Bernoulli measure on ΣN and which is not physically equivalent to any Hölder con-
tinuous function.

• there exist almost additive sequences of Hölder continuous functions with bounded
variation and which are not physically equivalent to any additive sequence generated
by a Hölder continuous function.

Proof. Let η be a quasi-Bernoulli measure on ΣN and consider the sequence H = (hn)n∈N
generated by the measure η. Suppose there exist a constant K > 0 and a function h ∈
Hol(ΣN) such that ∥hn − Snh∥∞ ≤ K <∞ for all n ∈ N. This readily gives that

e−KeSnh(x) ≤ η(Cj1···jn(x)) ≤ eSnh(x)eK

for all x ∈ ΣN and n ∈ N. Since Pσ(h) = Pσ(H) = 0 (see Theorem 2.1 in [IY17]), we
conclude that η is a Gibbs measure with respect to the Hölder continuous function h.

Example 2.10 in [BKM20] shows a quasi-Bernoulli measure ν on ΣN which is not Gibbs
with respect to any Hölder continuous function. Now let F = (fn)n∈N be the sequence
generated by ν, that is, fn(x) := log ν(Ci1...in(x)) for all x ∈ ΣN and n ∈ N. This implies
immediately that there is no f ∈ Hol(ΣN) such that

sup
n∈N

∥fn − Snf∥∞ <∞,

otherwise ν would be Gibbs with respect to the Hölder function f . Let Hol(ΣN) be the
space of Hölder continuous functions. Since Hol(ΣN) ⊂ Bow(ΣN, σ) and F has bounded
variation, Corollary 6 guarantees that there is no Hölder continuous function f such that

lim
n→∞

1

n
∥fn − Snf∥∞ = 0. (14)

Moreover, since Hol(ΣN) is dense in the space of continuous functions on the compact
space ΣN (with respect to the sup norm ∥ · ∥∞), for each n ≥ 1 there exists a Hölder
continuous function gn : ΣN → R such that ∥fn − gn∥∞ ≤ 1. By Lemma 6, the sequence
G := (gn)n∈N is almost additive. It is also clear that G has bounded variation. Moreover,
for every continuous function g : ΣN → R we have

lim
n→∞

1

n
∥fn − Sng∥∞ = 0 if and only if lim

n→∞

1

n
∥gn − Sng∥∞ = 0. (15)

So, if there exists a Hölder continuous function f such that

lim
n→∞

1

n
∥gn − Snf∥∞ = 0,
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it follows directly from (15) that the Hölder continuous function f also satisfies (14),
which is a contradiction. Therefore, there is no additive sequence generated by a Hölder
continuous function which is physically equivalent to the sequence G.

Notice that by this construction, for each α > 0 one can find an almost additive sequence
of Hölder continuous functions Gα := (gαn)n∈N with ∥gαn − fn∥∞ ≤ α for all n ∈ N, and not
physically equivalent to any additive sequence generated by a Hölder continuous function,
as desired.

Theorem 11 gives a negative answer to the problem raised in [LLV22] (see Remark
3.4 in it). It is important emphasizing that these counter-examples of Theorem 11 also
demonstrate that, regarding the thermodynamic formalism, multifractal analysis and er-
godic optimization, we are not always able to simplify or reduce the study of almost additive
sequences with bounded variation to the additive case with Hölder (or Lipschitz) poten-
tials, which are the most natural and most studied class of functions in the classical setup.
In other words, the physical equivalence proved in [Cun20] does not pass Hölder regularity
in general. On the other hand, regarding more general regularity aspects, every almost ad-
ditive sequence with bounded variation still could be physically equivalent to some additive
sequence generated by a Bowen function.

4.3 Bowen regularity of almost and asymptotically additive sequences

In this section, based on physical equivalence associations, we study how one can relate
more general regularity aspects of almost and asymptotically additive sequences to the
regularity of single continuous functions. As we shall see, measures satisfying the Gibbs
property and quasi-Bernoulli measures play an important role in our approach towards a
more general treatment of regularity for sequences.

A probability measure µ on ΣN is said to be Gibbs with respect to a function ϕ : ΣN → R
when there exists a constant K ≥ 1 such that

K−1 ≤ µn(Cj1...jn)

exp(−nPσ(ϕ) + Snϕ(x))
≤ K (16)

for all x ∈ Cj1...jn and n ≥ 1, where Pσ(ϕ) is the classical topological pressure of ϕ with
respect to the shift σ : ΣN → ΣN.

We note that every Gibbs measure with respect to a function is quasi-Bernoulli. In
fact, let µ be a Gibbs measure with respect to a function ϕ. By the definition, we have

K−1 exp[−(n+m)Pσ(ϕ) + Sn+mϕ(x)]

K2 exp(−nPσ(ϕ) + Snϕ(x)) exp(−mPσ(ϕ) + Smϕ(σn(x)))
≤

µn+m(Cj1···jn+m)

µn(Cj1···jn)µm(Cjn+1···jn+m)
,

µn+m(Cj1···jn+m)

µn(Cj1···jn)µm(Cjn+1···jn+m)
≤ K exp[−(n+m)Pσ(ϕ) + Sn+mϕ(x)]

K−2 exp(−nPσ(ϕ) + Snϕ(x)) exp(−mPσ(ϕ) + Smϕ(σn(x)))
.
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Since Sn+mϕ = Snϕ+ Smϕ ◦ σn, we finally obtain that

K−3 ≤
µn+m(Cj1···jn+m)

µn(Cj1···jn)µm(Cjn+1···jn+m)
≤ K3 := K̃,

as desired. This result can be extended to almost additive sequences:

Proposition 12. Every Gibbs measure with respect to an almost additive sequence is quasi-
Bernoulli.

Proof. Let F = (fn)n∈N be an almost additive sequence with Gibbs measure µ with uniform
constant K > 0 (recall the definition in (11)). By almost additivity, there exists C > 0
such that ∥fn+m−fn−fm ◦σn∥∞ ≤ C for all m,n ∈ N. Proceeding as in the additive case
above, one can check that

(K3eC)−1 ≤
µn+m(Cj1···jn+m)

µn(Cj1···jn)µm(Cjn+1···jn+m)
≤ K3eC .

Hence, µ is quasi-Bernoulli, as desired.

Proposition 13. Let F be a sequence of continuous functions with an equilibrium measure
µ ∈ Mσ satisfying the Gibbs property with respect to F. Then, µ is quasi-Bernoulli if and
only if F is almost additive.

Proof. By Proposition 12 if µ is Gibbs with respect to F then it is quasi-Bernoulli. For the
converse just use the Gibbs property together with the fact that every sequence generated
by a quasi-Bernoulli measure is almost additive.

Remark. Proposition 13 is, in particular, related to Theorem 2.8 in [BKM20] for planar
matrix cocycles in general.

The following result is a characterization of almost additive sequences for which we can
answer affirmatively the Question A and the Question B.

Theorem 14. Let F = (fn)n∈N be an almost additive sequence of continuous functions
with respect to the left-sided full shift σ : ΣN → ΣN and satisfying the bounded variation
property. Then, the following statements are equivalent:

1. the equilibrium measure of F is Gibbs with respect to some continuous Bowen func-
tion;

2. there exists a continuous Bowen function f : ΣN → R such that

lim
n→∞

1

n
∥fn − Snf∥∞ = 0.
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3. there exists a continuous Bowen function f : ΣN → R such that

sup
n∈N

∥fn − Snf∥∞ <∞.

Proof. Let us start proving that 1 implies 3. Since F has bounded variation, it follows by
Theorem 6 in [Mum06] (see also Theorem 5 in [Bar06]) that F has a unique equilibrium
measure η, which is also Gibbs with respect to F. By assumption, η is also Gibbs with
respect to some continuous function f . Then, there exist constants K1 ≥ 1 and K2 ≥ 1
such that

K−1
1 ≤ η(Ci1...in(x))

exp[−nPσ(F) + fn(x)]
≤ K1 and K−1

2 ≤ η(Ci1...in(x))

exp[−nPσ(F) + Snf(x)]
≤ K2 (17)

for all x ∈ ΣN and n ∈ N. This readily implies that |fn(x) − Snf(x)| ≤ logK1K2 for all
x ∈ X and n ∈ N, which yields 3.

Conversely, suppose 3 holds. Then, there exists a constant K3 > 0 and a continuous
function f ∈ Bow(ΣN, σ) such that ∥fn − Snf∥∞ ≤ K3 for all n ∈ N. Hence, by the Gibbs
property with respect to F in (17), we get that

(K1e
K3)−1 = K−1

1 e−K3 ≤ η(Ci1...in(x))

exp[−nPσ(F) + Snf(x)]
≤ K1e

K3

for all x ∈ ΣN and n ∈ N, as desired. Corollary 6 immediately gives that items 2 and 3 are
equivalent, and the result is proved.

Remark. We note that Theorem 14 is related to the characterization result obtained in
Theorem 2.9 in [BKM20] for planar matrix cocycles, but now also including Bowen func-
tions in general and requiring only physical equivalence instead of the stronger hypotheses
of uniformly bounded sequences.

We also know exactly what are the functions and almost additive sequences admitting
measures satisfying the Gibbs property:

Proposition 15. Let σ : ΣN be the left-sided full shift. Then

• ϕ ∈ Bow(ΣN, σ) if and only if there exists a Gibbs measure with respect to ϕ.

• an almost additive sequence F has bounded variation if and only if there exists a Gibbs
measure with respect to F.

Proof. Let µ be a Gibbs measure with respect to a function ϕ. By definition, there exists
K ≥ 1 such that

K−2 ≤ exp(Snϕ(x)− Snϕ(y)) ≤ K2
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for all x, y ∈ Ci1...in and all n ≥ 1. This implies that

sup
n∈N

sup{|Snϕ(x)− Snϕ(y)| : x, y ∈ Ci1...in} ≤ 2 logK <∞,

and ϕ ∈ Bow(ΣN, σ). On the other hand, when ϕ ∈ Bow(ΣN, σ) there exists an invariant
measure which is the unique equilibrium state for ϕ. Moreover, this measure is also Gibbs
with respect to ϕ (see the classical works [Bow75a] and [Bow75]).

For the nonadditive part, Theorem 6 in [Mum06] (or Theorem 5 [Bar06]) guarantees the
existence of unique equilibrium measures satisfying the Gibbs property for almost additive
sequences with bounded variation. The converse follows exactly as in the additive case.

Now let T : X → X be a continuous map, where X is a compact metric space. Recall
that a continuous function f is said to be a coboundary with respect to a map T : X → X
when there exists a continuous function q such that f(x) = q(T (x)) − q(x) for all x ∈ X.
Following [BJ02] and [Bou21], we say that a continuous function f : X → R is a weak
coboundary if it is the uniform limit of coboudaries. It is well known that f is a weak
coboundary if and only if

∫
X fdµ = 0 for every T -invariant measure µ (see for example

[BJ02], [KR01], and [Kri71]). Based on this and on Lemma 5, f is also said to be weak
coboundary if and only if the sequence (Snf/n)n∈N converges uniformly to zero.

We denoteWcob(X,T ) the vector space of weak coboundaries and Cob(X,T ) the vector
space of coboundaries with respect to the map T : X → X. In fact, one can check that
every coboundary is a Walters function. On the other hand, weak coboundaries form a
space that is strictly larger than the space of coboundaries in general (see for example
[BJ02] and [Koc13]).

Given two subspaces U and V in general, we define the new sum subspace U + V in
the natural way, that is, U + V = {u+ v : u ∈ U and v ∈ V }. When we have a direct sum,
we shall write U ⊕ V .

Proposition 16. Let σ : ΣN → ΣN be the left-sided full shift. For each continuous function
φ ∈ Wcob(ΣN, σ) + Bow(ΣN, σ) there exists an almost additive sequence of continuous
functions F := (fn)n∈N satisfying the Walters property and such that

lim
n→∞

1

n
∥fn − Snφ∥∞ = 0.

In particular, if φ ∈ Bow(ΣN, σ) then

sup
n∈N

∥fn − Snφ∥∞ <∞.

Proof. Since φ ∈ Wcob(ΣN, σ) + Bow(ΣN, σ), there exist functions u ∈ Wcob(ΣN, σ) and
ξ ∈ Bow(ΣN, σ) such that φ = u+ ξ. Proposition 15 guarantees the existence of a measure
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ν ∈ Mσ which is Gibbs with respect to ξ. In particular, there exists a constant K ≥ 1 such
that

K−1 ≤ ν(Ci1...in(x))

exp(−nPσ(ξ) + Snξ(x))
≤ K

for all x ∈ ΣN and all n ≥ 1. This implies that

| log ν(Ci1...in(x)) + nPσ(ξ)− Snξ(x)| ≤ logK for all x ∈ ΣN and all n ≥ 1, (18)

Now define G = (gn)n∈N as the sequence given by gn(x) := log ν(Ci1...in(x)). Since every
Gibbs measure is quasi-Bernoulli (see Proposition 12), the sequence of continuous functions
G generated by the quasi-Bernoulli measure ν is almost additive and satisfies the Walters
property. Now consider the sequence F = (fn)n∈N given by fn := gn+nP (ξ). The sequence
F is clearly almost additive, satisfies the Walters property and it follows directly from (18)
that

sup
n∈N

∥fn − Snξ∥∞ <∞ (19)

Moreover, since φ − ξ ∈ Wcob(ΣN, σ), we have that (Snφ)n∈N is physically equivalent
to (Snξ)n∈N. This together with (19) readily gives that

lim
n→∞

1

n
∥fn − Snφ∥∞ = 0,

as desired.

In general terms, Proposition 16 is saying that every additive sequence generated by
a Bowen continuous function with null topological pressure is physically equivalent to an
almost additive sequence generated by some quasi-Bernoulli measure.

In order to simplify the notation, let us denote Hol := Hol(ΣN, σ), Bow := Bow(ΣN, σ)
and Wcob(ΣN, σ) = Wcob. Moreover, let us define Hof := Hof(ΣN, σ) as the subset of
continuous functions which are not Bowen but have a unique equilibrium measure. We will
refer to Hof as the set of Hofbauer functions (see [Hof77]).

Furthermore, consider the spaces WB := WB(ΣN, σ) := Wcob(ΣN, σ) + Bow(ΣN, σ)

and W̃B := C(ΣN)/WB(ΣN, σ), where C(ΣN) is the space of continuous functions on ΣN.

We note that it is expected that Hof ∩WB ̸= ∅ and Hof ∩ W̃B ̸= ∅ (see for example
[PZ06], [Wal07], [Hu08], [IT12], [CT13]).

Now let f : ΣN → R be a continuous function. It is clear that if (Snf)n∈N is physically
equivalent to some f̃ ∈ Bow(ΣN, σ) then we must have f ∈ Wcob(ΣN, σ) + Bow(ΣN, σ).
Based on this, Proposition 13, Theorem 14 and Proposition 16, we can propose a classifi-
cation of almost additive sequences with respect to the left-sided full shift (see Figure 1).

We separate the following types of almost additive sequences with respect to the left-
sided full shift σ : ΣN → ΣN:
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• Type 1. Almost additive sequences F1 with bounded variation and with the unique
equilibrium measure satisfying the Gibbs property with respect to some function
ϕ ∈ Bow. They are always physically equivalent to (Snψ)n∈N for some ψ ∈ WB
(i.e. Bow) and never physically equivalent to any additive sequence (Snξ)n∈N with

ξ ∈ W̃B.

• Type 2. Almost additive sequences F2 with bounded variation and with equilibrium
measure not satisfying the Gibbs property with respect to any continuous function.
In this case, the equilibrium is only weak-Gibbs with respect to some continuous
function. These sequences are always physically equivalent to some (Snψ)n∈N with

ψ ∈ Hof ∩ W̃B. As a consequence, there is no ξ ∈ WB such that (Snξ)n∈N is
physically equivalent to F2.

• Type 3. Almost additive sequences F3 without the bounded variation condition
but admitting a unique equilibrium measure. They are either physically equivalent
to some (Snψ1)n∈N with ψ1 ∈ Hof ∩ W̃B or they are physically equivalent to some
(Snψ2)n∈N with ψ2 ∈ Hof∩WB, which immediately implies ψ2 ∈ Bow (see Figure 1).

• Type 4. Almost additive sequences F4 with more than one equilibrium measure.
They are always physically equivalent to some additive sequence (Snψ)n∈N with ψ ∈
W̃B/Hof and, consequently, never physically equivalent to any additive sequence
(Snξ)n∈N with ξ ∈WB.

Figure 1: The different types of almost additive sequences and their physical equivalence
relations with the space of continuous functions.

Now let us show how one can construct examples for the types 1, 3 and 4. Our gen-
eral simple strategy to search examples of asymptotically and almost additive sequences
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is to start with a fixed function ϕ in some ”appropriate” already known subset of contin-
uous functions and from that to build the nonadditive sequence physically equivalent to
(Snϕ)n∈N.

Examples of Types 1, 3 and 4. Sequences of Type 1 are, for instance, the ones
given by Proposition 16, which also include the Hölder continuous case. Notice that those
sequences are always physically equivalent to some almost additive sequence generated by
a quasi-Bernoulli measure.

Sequences of Type 3 are constructed in the following way. Letting ϕ ∈ Bow and
ξ ∈Wcob/Bow, we have ψ := ϕ+ ξ ∈ Hof ∩WB. Arguing as in the proof of Theorem 11,
for each n ∈ N there exists a continuous function fn ∈ Hol such that ∥fn − Snψ∥∞ ≤ 1
(by the density of Hölder continuous functions). Since ψ /∈ Bow, the almost additive
sequence F = (fn)n∈N does not have bounded variation. Moreover, F is almost additive by
Lemma 6. On the other hand, ψ ∈ WB implies that (Snψ)n∈N is physically equivalent to
some additive sequence (Snf)n∈N with f ∈ Bow. Then,

lim
n→∞

1

n
∥fn − Snf∥∞ ≤ lim

n→∞

1

n
∥fn − Snψ∥∞ + lim

n→∞

1

n
∥Snψ − Snf∥∞ = 0.

We note that, by Proposition 15, the unique equilibrium measure for F does not satisfy the
Gibbs property with respect to F but is, nevertheless, Gibbs with respect to some Bowen
function and, consequently, also quasi-Bernoulli. As in Type 1, these sequences are always
physically equivalent to some almost additive sequence generated by a quasi-Bernoulli
measure, which is a sequence solely composed of locally constant functions.

For the other case of Type 3 sequences, we consider a function ψ ∈ Hof ∩ W̃B and
proceed as before to find an almost additive sequence G = (gn)n∈N of Hölder continuous
functions such that ∥gn−Snψ∥∞ ≤ 1 for all n ∈ N. In particular, G does not have bounded
variation, is physically equivalent to (Snψ)n∈N and not physically equivalent to any additive
sequence generated by a Bowen function. One more time, Proposition 15 guarantees that
the unique equilibrium measure for G does not satisfy the Gibbs property with respect to
G. In this case, the equilibrium measure still might be weak Gibbs with respect to some
continuous function.

In order to show an example of Type 4, we just start with some continuous function
ψ : ΣN → R with more than one equilibrium measure. It is clear that ψ ∈ W̃B/Hof .
Following in the very same manner as for Type 3, we are able to find almost additive
sequences without bounded variation and which are physically equivalent to (Snψ)n∈N, as
desired.

Before discussing almost additive sequences of Type 2, let us settle Question D, which
is regarding regularity of asymptotically additive sequences.

We recall that a measure µ on ΣN (not necessarily invariant) is said to be weak Gibbs
with respect to a function ϕ : ΣN → R when there exists a sequence (Kn)n∈N ⊂ [1,∞) with
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logKn/n = 0 and such that

K−1
n ≤ µn(Cj1...jn)

exp(−nPσ(ϕ) + Snϕ(x))
≤ Kn

for all x ∈ Cj1...jn and n ≥ 1. The same definition is also naturally extended to the nonad-
ditive case (see for example [Bar06] and [IY17]).

Asymptotically additive case. Fix a continuous Hofbauer function ψ ∈ Hof∩ W̃B.
Since every almost additive sequence admits a (not necessarily invariant) weak Gibbs mea-
sure ([Bar06]), in particular, the function ψ admits some weak Gibbs measure ν on ΣN,
that is, there exists a sequence (Kn)n∈N ⊂ [1,∞) with logKn/n = 0 such that

| log ν(Ci1...in(x)) + nP (ψ)− Snψ(x)| ≤ logKn for all x ∈ ΣN and n ≥ 1,

which readily implies that the sequence G := (fn + nP (ψ))n∈N is asymptotically additive
and also physically equivalent to (Snψ)n∈N, where fn(x) := log ν(Ci1...in(x)) for all x ∈ ΣN

and n ∈ N. Notice that G has a unique equilibrium measure and satisfies the Walters
property (i.e. also has bounded variation). Moreover, since ψ /∈ WB, there is no additive
sequence generated by a Bowen function which is physically equivalent to G. In particular,
G is not physically equivalent to any additive sequence generated by a locally constant
function.

Proceeding as before (see the proof of Theorem 11), for each α > 0 there exists a
sequence Hα := (hαn)n∈N of Hölder continuous functions such that ∥hαn−fn−nP (ψ)∥∞ ≤ α
for all n ∈ N. This implies that Hα has bounded variation and

lim
n→∞

1

n
∥hαn − Snψ∥∞ = 0 with ψ ∈ Hof ∩ W̃B.

That is, for each α > 0 the sequence Hα is asymptotically additive, has bounded variation,
admits a unique equilibrium measure but is not physically equivalent to any additive se-
quence generated by a Bowen function. In particular, the sequences Hα are not physically
equivalent to any additive sequence generated by a Hölder continuous function.

These examples demonstrate that Question D cannot be affirmatively answered.

Finally, let us consider the second type of almost additive sequences of potentials.

Examples of Type 2 (?) We note that there exists an almost additive sequence
of Type 2 if and only if there exists a quasi-Bernoulli measure not Gibbs with respect
to any continuous function. In fact, suppose F is a sequence of Type 2, that is, F has
bounded variation and has the unique equilibrium measure µ not Gibbs with respect to
any continuous function. Since F is Gibbs with respect to F, Proposition 12 guarantees
that µ is a quasi-Bernoulli measure.
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Conversely, considering µ a quasi-Bernoulli measure, the sequence F = (fn)n∈N gener-
ated by µ is almost additive and has bounded variation. Since we are assuming µ not Gibbs
with respect to any continuous function, by Proposition 15 and Corollary 6, the sequence
F cannot be physically equivalent to any Bowen function. That is,

lim
n→∞

1

n
∥fn − Snψ∥∞ = 0

for some ψ ∈ W̃B. Since F has bounded variation, it follows from Theorem 6 in [Mum06]
that F has a unique equilibrium measure, which implies that ψ ∈ Hof . Therefore, we
conclude that ψ ∈ Hof ∩ W̃B and F is indeed a sequence of Type 2, as desired.

We still don’t know about the existence of such sequences in this setup or in any other
setup in general.

4.4 Some open questions and final comments

As we saw in the previous subsection, the more general regularity problem relating se-
quences with bounded variation and Bowen functions is still open, and depends on the
existence of sequences of Type 2. Then, inspired by [BKM20] and based on Proposition 13
and Theorem 14, we ask the following:

Q1: is there a Bowen continuous function A : ΣN → GL(d,R) generating a matrix
cocycle A : ΣN × N → GL(d,R) where the sequence F = (log ∥A(x, n)∥)n∈N is almost
additive of Type 2 ? For what dimensions d ≥ 2 this should be possible ?

A negative answer to Q1 would give a concrete and important class of examples where
we can reduce the nonadditive setup directly to the additive one, in the spirit of [BKM20].
On the other side, a positive answer would fill the only type of sequences that are missing
in our proposed classification.

Now let us consider again the left-sided full shift of finite type σ : ΣN → ΣN. Denote
by Wal :=Wal(ΣN, σ) the vector space of continuous Walters functions with respect to σ,
and WalL :=WalL(Σ

N, σ) the vector space of all functions f ∈Wal(ΣN, σ) and such that
Lf = 0, where L is the transfer operator given by

[Lf ](y) = 1

#Σ

∑
σ(x)=y

f(x) for all y ∈ ΣN.

T. Bousch ([Bou02]) gave a characterization of Walters functions as

Wal = Cob⊕WalL ⊕ R.

Based on this, we can ask if
Q2: Do we also have Bow =WCob⊕WalL ⊕ R ? or even Bow =Wcob+Wal ?
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Since Wal is a proper subset of Bow (see [Wal07]), it is clear that Wcob + Wal ⊆
Wcob + Bow (not necessarily a proper inclusion). Then, a negative answer to Q2 would
guarantee the existence of a function ψ ∈ (Wcob + Bow)/(Wcob + Wal). In this case,
Proposition 16 would immediately give an almost additive sequence F satisfying the Wal-
ters property and which is physically equivalent to (Snψ)n∈N. Hence, F would be an
example of an almost additive sequence with Walters regularity but not physically equiv-
alent to any additive sequence generated by a Walters function (or any locally constant
function in particular). On the other hand, a positive answer to Q2 would imply that for
any Bowen function ϕ there exists a Walter function ψ such that (Snϕ)n∈N and (Snψ)n∈N
are physically equivalent. Moreover, Theorem 5 would give that (Snϕ)n∈N is cohomologous
to (Snψ)n∈N in the nonadditive sense of definitions 1, 2 and 3. In this case, regarding the
study of additive and nonadditive thermodynamic properties with respect to subshifts of
finite type, Bowen regularity and Walters regularity would be actually equivalent. Notice
that, since the additive notion of cohomology is much stronger than the nonadditive version
introduced in section 2, this equivalence between Bowen and Walters functions wouldn’t
violate the classical Livšic Theorem.

Acknowledgments. The first author was partially supported by NSF of China, grant
no. 12222110. The second author was partially supported by CNPq of Brazil, under the
project with reference 409198/2021-8.

References
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