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Abstract. Building on the construction of equilibrium measures, we
establish a conditional variational principle for the multifractal spectra
of an almost additive family with respect to a continuous flow Φ such
that the entropy map µ 7→ hµ(Φ) is upper-semicontinuous. We also
show that the spectrum is continuous and that in the case of hyperbolic
flows the corresponding irregular sets have full topological entropy. More
generally, we consider the spectrum for the u-dimension and obtain cor-
responding results.

1. Introduction

1.1. Thermodynamic formalism and dimension theory. The thermo-
dynamic formalism, together with its many applications, is a quite active
and broad field of research. One the most basic notions is that of the topo-
logical pressure P (φ) of a continuous function φ with respect to a dynamical
system f : X → X. The notion was introduced by Ruelle in [22] for expan-
sive maps and by Walters in [25] in the general case. In particular, the
variational principle for the topological pressure says that

P (φ) = sup
µ

(
hµ(f) +

∫
X
φdµ

)
,

where the supremum is taken over all f -invariant probability measures µ
on X and where hµ(f) is the entropy of f with respect to µ. We refer the
reader to the books [15, 18, 19, 23] for details and further references.

The nonadditive thermodynamic formalism was introduced in [3] as a
generalization of the (classical) thermodynamic formalism, essentially re-
placing the topological pressure P (φ) of a single function φ by the topo-
logical pressure P (Φ) of a sequence of continuous functions Φ = (φn)n∈N.
Besides playing a unifying role, the nonadditive thermodynamic formalism
has various nontrivial applications, particularly to the dimension theory and
multifractal analysis of dynamical systems. In this respect, the discussion
of the existence and uniqueness of equilibrium and Gibbs measures, among
various other properties, turns out to be crucial.

Over the last decades, the dimension theory of dynamical systems steadily
developed into an independent and quite active field of research (see for
example the books [4, 20]). However, while the dimension theory and mul-
tifractal analysis for maps are quite developed, the corresponding theory
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for flows has experienced a slower progress. A major reason for this slower
progress is that often a result for flows either follows easily from a corre-
sponding result for maps or at least can be obtained using similar arguments,
or requires substantial changes or even new ideas.

Indeed, some results for flows can be obtained in a more or less straight-
forward manner from those for discrete time. This is the case for example
of the basic properties of the topological pressure as well as of the lower
and upper capacity pressures that are conveniently introduced as general
Carathéodory dimension characteristics (see [20]). Indeed, in dimension
theory and multifractal analysis one needs to consider sets that need not
be compact nor invariant. In particular, it is possible to obtain formulas
for the lower and upper capacity topological pressures in terms of partition
functions and separated sets following closely corresponding arguments for
discrete time, both in the additive and in the nonadditive settings (see [8]).

On the other hand, certain results for example involving hyperbolicity
and recurrence require substantial changes. In particular, in view of work
of Bowen [14] and Ratner [21], any locally maximal hyperbolic set has as-
sociated Markov systems of arbitrarily small diameter. This essentially cor-
responds to show that one can think of the flow on the hyperbolic set as
a suspension flow over a topological Markov chain. It turns out that the
possible lack of additional regularity of the height function of the suspen-
sion flow may require extra care. Sometimes we may resort to the time-1
map (which is unavoidable when there is no hyperbolicity), but this causes
other problems. For example, in general an invariant measure for the time-1
map need not be invariant for the flow and an ergodic measure for the flow
need not be ergodic for the time-1 map. In its turn, this may require using
an ergodic decomposition with respect to the time-1 map instead of with
respect to the flow. The study of recurrence creates other problems, even
in the presence of hyperbolicity, since it is crucial to consider appropriate
distances at the level of symbolic dynamics that would not change the re-
currence times. This is a delicate problem in the case of flows (see [1, 2] for
details).

With all this in mind, in [8] we introduced a version of the nonadditive
topological pressure for flows and we described some of its main properties,
thus paving the way for a corresponding nonadditive thermodynamic formal-
ism. In particular, we established a variational principle for the nonadditive
topological pressure.

1.2. Description of the results. Here we consider a class of families for
which it is possible not only to establish a variational principle for the topo-
logical pressure, but also to discuss the existence and uniqueness of equilib-
rium and Gibbs measures, as well as to describe a quite general multifractal
analysis. This is the class of almost additive families: a family (at)t>0 is
said to be almost additive with respect to a flow Φ = (φt)t∈R if there exists
a constant C > 0 such that

−C + at + as ◦ φt ≤ at+s ≤ at + as ◦ φt + C

for every t, s > 0. This class occurs naturally for example in the study of
nonconformal repellers.
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In particular, we have the following variational principle for the topolog-
ical pressure (see [9]). Let Φ be a continuous flow on a compact metric
space X and let a be an almost additive family of continuous functions with
tempered variation (see Section 2.1) such that

sup
t∈[0,s]

‖at‖∞ <∞ for some s > 0. (1)

Then

P (a) = sup
µ∈M

(
hµ(Φ) + lim

t→∞

1

t

∫
X
at dµ

)
, (2)

where M is the set of all Φ-invariant probability measures on X. Moreover,
for hyperbolic flows one can establish the existence and uniqueness of the
equilibrium measure of an almost additive family of continuous functions
with bounded variation (see Section 5.2) as well as its Gibbs property. We
say that a Φ-invariant measure µ on X is an equilibrium measure for the
almost additive family a (with respect to the flow Φ) if the supremum in (2)
is attained at µ, that is, if

P (a) = hµ(Φ) + lim
t→∞

1

t

∫
X
at dµ.

Now let Λ be a hyperbolic set for a C1 flow Φ such that Φ|Λ is topologi-
cally mixing and let a be an almost additive family of continuous functions
on Λ with bounded variation satisfying (1). Then there exists a unique
equilibrium measure for a (see [9] for this and other properties).

In this paper we establish a conditional variational principle for the mul-
tifractal spectra of an almost additive family, building on the construction
of equilibrium measures. Here we formulate only a particular case of our
main results.

Let a = (at)t≥0 be an almost additive family of continuous functions with
tempered variation satisfying (1). Given α ∈ R, we consider the level set

Kα =

{
x ∈ X : lim

t→∞

at(x)

t
= α

}
.

We also consider the function E(α) : R→ R defined by

E(α) = h(Φ|Kα).

It is called the entropy spectrum of the family a with respect to Φ. Finally,
we consider the map P : M→ R defined by

P(µ) = lim
t→∞

1

t

∫
X
at dµ.

The following theorem is a particular case of our main result (see Theo-
rem 9 that considers the more general u-dimension spectrum).

Theorem 1. Let Φ be a continuous flow on a compact metric space X such
that the map µ 7→ hµ(Φ) is upper semicontinuous and assume that for every
s ∈ R the family sa has a unique equilibrium measure. If α ∈ intP(M), then
Kα 6= ∅ and the following properties hold:

(1) E(α) = max{hµ(Φ) : µ ∈M and P(µ) = α};
(2) E(α) = min{P (qa)− qα : q ∈ R};
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(3) there exists an ergodic measure µα ∈ M such that P(µα) = α,
µα(Kα) = 1 and hµα(Φ) = E(α).

In addition, the entropy spectrum E is continuous on intP(M).

To the possible extent, we follow the proof of Theorem 3 in [5] for discrete
time, which in its turn is inspired by work in [11]. A key tool used in the
proof is the differentiability of the topological pressure under appropriate
assumptions (see Proposition 6). In particular, since sa has a unique equi-
librium measure for every s ∈ R, the function s 7→ P (sa) is of class C1 on R.
Using this fact, for each level set Kα we can find a unique measure µα as
in the statement of the theorem. Moreover, the regularity of the topological
pressure allows us to establish the continuity of the spectrum.

Under the stronger assumption of the existence of a hyperbolic set Λ for
a C1 flow Φ, we also show that the irregular set

I(a) =

{
x ∈ Λ : lim inf

t→∞

at(x)

t
< lim sup

t→∞

at(x)

t

}
has full topological entropy (see Theorem 13 for a more general statement).

Theorem 2. Let Λ be a locally maximal hyperbolic set for a C1 flow Φ
such that Φ|Λ is topologically mixing. If a is an almost additive family of
continuous functions with bounded variation satisfying (1) such that P(νE) ∈
intP(M) for the measure of maximal entropy νE, then h(Φ|I(a)) = h(Φ|Λ).

Finally, we comment briefly on the possible relation of our work to results
of Bomfim and Varandas in [13] that combine large deviations and irregular
sets. We continue to consider a locally maximal hyperbolic set Λ and an
almost additive family of continuous functions a as in Theorem 2. Let ν be
a Φ-invariant ergodic measure. By Birkhoff’s ergodic theorem we have

lim
t→∞

at(x)

t
= lim

t→∞

1

t

∫
Λ
at dν = P(ν)

for ν-almost every x ∈ Λ. For each c > 0 let

Λ(a, ν, c) =

{
x ∈ Λ : lim sup

t→∞

∣∣∣∣at(x)

t
− P(ν)

∣∣∣∣ ≥ c}
and

Λ(a, ν, c) =

{
x ∈ Λ : lim inf

t→∞

∣∣∣∣at(x)

t
− P(ν)

∣∣∣∣ ≥ c}.
Clearly, Λ(a, ν, c) ⊂ Λ(a, ν, c) and one can verify that

I(a) =
⋃
c>0

Λ(a, ν, c) =
⋃
c>0

Λ(a, ν, c).

Therefore,

h(Φ|I(a)) ≥ h(Φ|Λ(a,ν,c)) ≥ h(Φ|Λ(a,ν,c))

for each c > 0. If further information about the sets Λ(a, ν, c) and Λ(a, ν, c)
was available, one could perhaps give an alternative proof Theorem 13, thus
showing that the irregular set has full topological entropy
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Now we consider the case of discrete time. When Λ is repeller for a C1

map f such that f |Λ is topologically mixing, it follows from more general
results in [13] that

h(f |Λ) > h(f |Λ(a,µ,c)) ≥ h(Φ|Λ(a,µ,c))

for every c > 0, where µ is the unique measure of maximal entropy for f .
It is also shown that the functions

c 7→ h(f |Λ(a,µ,c)) and c 7→ h(f |Λ(a,µ,c))

are continuous, strictly decreasing and concave in a neighborhood of zero.
This additional information is crucial in order to show that the irregular
sets have full topological entropy. It would be quite interesting to find out
whether the same happens in our setting, that is, if the maps

c 7→ h(f |Λ(a,ν,c)) and c 7→ h(f |Λ(a,ν,c))

share similar properties. Then one might be able to give an alternative proof
of Theorem 2 and of its generalizations, although the latter should depend
on appropriate cohomology assumptions for almost additive sequences.

2. Preliminaries

In this section we recall a few basic notions and results that will be used
later on in the paper. This includes the notion of the topological pressure
of a family of continuous functions and the notion of u-dimension.

2.1. Topological pressure. Let Φ = (φt)t∈R be a continuous flow on a
compact metric space (X, d). Moreover, let a = (at)t≥0 be a family of
continuous functions at : X → R with tempered variation. This means that

lim
ε→0

lim
t→∞

γt(a, ε)

t
= 0, (3)

where

γt(a, ε) = sup
{
|at(y)− at(x)| : y ∈ Bt(x, ε) for some x ∈ X

}
and

Bt(x, ε) =
{
y ∈ X : d(φs(y), φs(x)) < ε for s ∈ [0, t]

}
.

Given ε > 0, we say that Γ ⊂ X × R+
0 covers a set Z ⊂ X if⋃

(x,t)∈Γ

Bt(x, ε) ⊃ Z

and we write

a(x, t, ε) = sup
{
at(y) : y ∈ Bt(x, ε)

}
for (x, t) ∈ Γ.

For each Z ⊂ X and α ∈ R, let

M(Z, a, α, ε) = lim
T→∞

inf
Γ

∑
(x,t)∈Γ

exp(a(x, t, ε)− αt), (4)

with the infimum taken over all countable sets Γ ⊂ X× [T,+∞) covering Z.
When α goes from −∞ to +∞, the quantity in (4) jumps from +∞ to 0 at
a unique value and so one can define

P (a|Z , ε) = inf
{
α ∈ R : M(Z, a, α, ε) = 0

}
.
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Moreover, the limit

P (a|Z) = lim
ε→0

P (a|Z , ε)

exists and is called the (nonadditive) topological pressure of the family a on
the set Z. It was introduced in [6] following closely a corresponding notion
for discrete time (see [20]). For simplicity of the notation, we shall also write
P (a|X) = P (a).

2.2. u-dimension for flows. We continue to assume that Φ is a continuous
flow on a compact metric space X. Given a positive continuous function
u : X → R, we consider the family of continuous functions ū = (ut)t≥0

defined by

ut(x) =

∫ t

0
(u ◦ φs)(x)ds

for every x ∈ X and t > 0. For each Z ⊂ X and α ∈ R, let

N(Z, u, α, ε) = lim
T→∞

inf
Γ

∑
(x,t)∈Γ

e−αu(x,t,ε),

with the infimum taken over all countable sets Γ ⊂ X× [T,+∞) covering Z.
Finally, we define

dimu,ε Z = inf
{
α ∈ R : N(Z, u, α, ε) = 0

}
.

The limit

dimu Z := lim
ε→0

dimu,ε Z

exists and is called the u-dimension of the set Z (with respect to the flow Φ).
It was introduced in [10] following closely a corresponding notion for discrete
time in [12]. Notice that when u = 1 the number dimu Z coincides with the
topological entropy h(Φ|Z) of Φ on the set Z.

The following result shows how the topological pressure for flows is con-
nected with the u-dimension (and follows readily from the definitions).

Proposition 3. We have dimu Z = α, where α is the unique root of the
equation P (−αū|Z) = 0.

Given a probability measure µ on X and ε > 0, let

dimu,ε µ = inf
{

dimu,ε Z : µ(Z) = 1
}
.

Then the limit

dimu µ := lim
ε→0

dimu,ε µ

exists and is called the u-dimension of the measure µ. Moreover, the lower
and upper u-pointwise dimensions of µ at a point x ∈ X are defined, respec-
tively, by

dµ,u(x) = lim
ε→0

lim inf
t→∞

− logµ(Bt(x, ε))

u(x, t, ε)

and

dµ,u(x) = lim
ε→0

lim sup
t→∞

− logµ(Bt(x, ε))

u(x, t, ε)
.
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These were introduced in [10] following closely corresponding notions for
discrete time in [12]. For an ergodic Φ-invariant probability measure µ
on X, we have

dµ,u(x) = dµ,u(x) =
hµ(Φ)∫
X udµ

(5)

for µ-almost every x ∈ X. These identities can be obtained as in the case
of discrete time (see [12]).

2.3. Almost additive families. We recall that a family a = (at)t≥0 of
functions at : X → R is said to be almost additive (with respect to a flow Φ)
if there exists a constant C > 0 such that

−C + at + as ◦ φt ≤ at+s ≤ at + as ◦ φt + C

for every t, s ≥ 0. Let MΦ be the set of all Φ-invariant probability measures
µ on X. We have the following result (see [9]).

Proposition 4. Let a be an almost additive family of continuous functions
with supt∈[0,s] ‖at‖∞ < ∞ for some s > 0. For any measure µ ∈ MΦ, the
limit

ã(x) := lim
t→∞

at(x)

t

exists for µ-almost every x ∈ X. Moreover:

(1) at/t→ ã in L1(X,µ) when t→∞;
(2)

∫
X(at/t)dµ→

∫
X ã dµ when t→∞;

(3) the function

MΦ 3 µ 7→ lim
t→∞

1

t

∫
X
at dµ

is continuous in the weak∗ topology.

We also recall a variational principle for the topological pressure of almost
additive families that was established in [9].

Theorem 5. Let Φ be a continuous flow on a compact metric space X and
let a be an almost additive family of continuous functions with tempered
variation such that supt∈[0,s] ‖at‖∞ <∞ for some s > 0. Then

P (a) = sup
µ∈MΦ

(
hµ(Φ) +

∫
X

lim
t→∞

at(x)

t
dµ(x)

)
= sup

µ∈MΦ

(
hµ(Φ) + lim

t→∞

1

t

∫
X
at dµ

)
.

A measure ν ∈ MΦ is said to be an equilibrium measure of the almost
additive family a (with respect to the flow Φ) if

P (a) = hν(Φ) + lim
t→∞

1

t

∫
X
at dν.
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3. Regularity of the topological pressure

In this section we establish some regularity properties of the topological
pressure. Let A(X) be the set of all almost additive families of continuous
functions a = (at)t≥0 on X with tempered variation such that

sup
t∈[0,s]

‖at‖∞ <∞ for some s > 0.

Moreover, let E(X) ⊂ A(X) be the set of all such families with a unique
equilibrium measure.

Proposition 6. If Φ is a continuous flow on a compact metric space X and
the map µ 7→ hµ(Φ) is upper semicontinuous, then the following properties
hold:

(1) Given a ∈ A(X), the function s 7→ P (a + sb) is differentiable at
s = 0 for every b ∈ A(X) if and only if a ∈ E(X). In this case, the
unique equilibrium measure µa of a is ergodic and

d

ds
P (a+ sb)|s=0 = lim

t→∞

∫
X

bt
t
dµa. (6)

(2) Given an open set I ⊂ R, if a+ sb ∈ E(X) for every s ∈ I, then the
function s 7→ P (a+ sb) is of class C1 on I.

Proof. We follow the proof of Proposition 4 in [5] that considers the case of
discrete time (see also [18]). It is shown in [9] that if the map µ 7→ hµ(Φ) is
upper semicontinuous, then any family in A(X) has at least one equilibrium
measure. Take s ∈ R and a, b ∈ A(X). Then a + sb ∈ A(X) and so there
exists an equilibrium measure µ̄s for a+ sb. By Theorem 5, we obtain

P (a+ sb)− P (a) ≥ hµ̄0(Φ) + lim
t→∞

∫
X

at + sbt
t

dµ̄0 − P (a)

= s lim
t→∞

∫
X

bt
t
dµ̄0

and

P (a+ sb)− P (a) ≤ P (a+ sb)− hµ̄s(Φ)− lim
t→∞

∫
X

at
t
dµ̄s

= s lim
t→∞

∫
X

bt
t
dµ̄s.

Therefore,

lim
t→∞

∫
X

bt
t
dµ̄0 ≤

P (a+ sb)− P (a)

s
≤ lim

t→∞

∫
X

bt
t
dµ̄s (7)

for s > 0 and

lim
t→∞

∫
X

bt
t
dµ̄0 ≥

P (a+ sb)− P (a)

s
≥ lim

t→∞

∫
X

bt
t
dµ̄s (8)

for s < 0.
Assume that the function s 7→ P (a + sb) is differentiable at s = 0 for

every b ∈ A(X). Moreover, assume that µa and νa are two equilibrium
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measures for a. For a continuous function c : X → R, we consider the family
of functions given by

ct(x) =

∫ t

0
(c ◦ φs)(x) ds

for t > 0 and x ∈ X. It follows from Birkhoff’s ergodic theorem that

lim
t→∞

∫
X

ct
t
dµ =

∫
X
c dµ

for each µ ∈ MΦ. Since the map s 7→ P (a + sb) is differentiable at s = 0,
it follows from (7) and (8) that∫

X
c dµa = lim

t→∞

∫
X

ct
t
dµa

= lim
s→0

P (a+ sc)− P (a)

s

= lim
t→∞

∫
X

ct
t
dνa =

∫
X
c dνa.

The arbitrariness of c guarantees that µa = νa and so a ∈ E(X).
We continue with an auxiliary result.

Lemma 7. If µ̄sn → µ when n → ∞ for some sequence sn → 0, then µ is
an equilibrium measure for a.

Proof of the lemma. It follows from Theorem 5 that

P (a) ≥ hµ(Φ) + lim
t→∞

1

t

∫
X
at dµ. (9)

Moreover, the map

ν 7→ hν(Φ) + lim
t→∞

1

t

∫
X
at dν

is upper semicontinuous (see [9]). Therefore,

hµ(Φ) + lim
t→∞

1

t

∫
X
at dµ

≥ lim sup
n→∞

(
hµ̄sn (Φ) + lim

t→∞

1

t

∫
X
at dµ̄sn

)
= lim sup

n→∞

(
hµ̄sn (Φ) + lim

t→∞

1

t

∫
X

(at + snbt) dµ̄sn − sn lim
t→∞

1

t

∫
X
bt dµ̄sn

)
= lim sup

n→∞

(
P (a+ snb)− sn lim

t→∞

1

t

∫
X
bt dµ̄sn

)
.

(10)
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On the other hand, we obtain

P (a+ snb) = sup
µ∈MΦ

(
hµ(Φ) + lim

t→∞

1

t

∫
X

(at + snbt) dµ

)
≥ sup

µ∈MΦ

(
hµ(Φ) + lim

t→∞

1

t

∫
X
at dµ

)
− sup
µ∈MΦ

(
−sn lim

t→∞

1

t

∫
X
bt dµ

)
= P (a)− sup

µ∈MΦ

(
−sn lim

t→∞

1

t

∫
X
bt dµ

)
.

(11)

Now we observe that since the family b is almost additive, we have

‖b[t]‖∞ ≤ [t](‖b1‖∞ + C) (12)

for every t > 0, where [·] denotes the integer part. Hence, for every µ ∈MΦ

and t > 0 we have∣∣∣∣∫
X

b[t]

[t]
dµ

∣∣∣∣ ≤ ‖b[t]‖∞[t]
≤ ‖b1‖∞ + C =: D.

This implies that

−sn lim
t→∞

1

t

∫
X
bt dµ = −sn lim

t→∞

1

[t]

∫
X
b[t] dµ ≤ |sn|D.

Similarly,

−sn lim
t→∞

1

t

∫
X
bt dµ̄sn ≥ −|sn|D

for every n ∈ N, and it follows from (10) and (11) that

hµ(Φ) + lim
t→∞

1

t

∫
X
at dµ ≥ P (a)− 2|sn|D.

Letting sn → 0 gives

hµ(Φ) + lim
t→∞

1

t

∫
X
at dµ ≥ P (a)

and it follows from (9) that

hµ(Φ) + lim
t→∞

1

t

∫
X
at dµ = P (a).

In other words, µ is an equilibrium measure for a. �

We proceed with the proof of the proposition. Take a ∈ E(X), b ∈ A(X)
and s ∈ R. Let µ̄s be an equilibrium measure for a + sb and let µa be the
unique equilibrium measure for a. Since a ∈ E(X), it follows from Lemma 7
that µ̄s → µa when s→ 0. By (7) and (8), we obtain

d

ds
P (a+ sb)|s=0 = lim

s→0

P (a+ sb)− P (a)

s
= lim

t→∞

1

t

∫
X
bt dµa,
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which establishes identity (6). Now we show that µa is ergodic. Otherwise
it would exist a Φ-invariant measurable set Y ⊂ X with 0 < µa(Y ) < 1. We
consider two Φ-invariant probability measures ν1 and ν2 defined by

ν1(A) =
µa(A ∩ Y )

µa(Y )
and ν2(A) =

µa(A ∩ (X \ Y ))

µa(X \ Y )

for every measurable set A ⊂ X. Then

hµa(Φ) = hµa(φ1) = µa(Y )hν1(φ1) + µa(X \ Y )hν2(φ1)

and ∫
Y
at dµa = µa(Y )

∫
X
at dν1,

∫
X\Y

at dµa = µa(X \ Y )

∫
X
at dν2

for every t > 0. We obtain

P (a) = hµa(Φ) + lim
t→∞

1

t

∫
X
at dµa

= µa(Y )hν1(Φ) + µa(X \ Y )hν2(Φ)

+ µa(Y ) lim
t→∞

1

t

∫
X
at dν1 + µa(X \ Y ) lim

t→∞

1

t

∫
X
at dν2

≤ max
j=1,2

{
hνj (Φ) + lim

t→∞

1

t

∫
X
at dνj

}
≤ P (a).

This implies that either ν1 or ν2 is an equilibrium measure for a and so it
must be equal to µa. By construction, νj 6= µa for i = 1, 2. Therefore,
µa must be ergodic, which establishes the first statement in the proposition.

Now we prove the second statement. Let I ⊂ R be an open set such that
a+ sb ∈ E(X) for every s ∈ I. For each σ ∈ I, we have

D(σ) : =
d

ds
P (a+ sb)|s=σ

=
d

ds
P
(
a+ σb+ (s− σ)b

)
|s−σ=0

= lim
t→∞

1

t

∫
X
bt dµa+σb

(13)

and so the function s 7→ P (a + sb) is differentiable on I. For a sequence
(σn)n∈N in I such that σn → σ when n→∞, it follows from (13) that

D(σn) = lim
t→∞

1

t

∫
X
bt dµa+σnb = lim

t→∞

1

t

∫
X
bt dµa+σb+(σn−σ)b.

On the other hand, by item (3) in Proposition 4, the map

F (µ) = lim
t→∞

1

t

∫
X
bt dµ

is continuous on MΦ and since σn → σ, it follows from Lemma 7 that

lim
n→∞

F (µa+σb+(σn−σ)b) = F (µa+σb).



12 LUIS BARREIRA AND CARLLOS HOLANDA

Therefore,

lim
n→∞

D(σn) = lim
n→∞

lim
t→∞

1

t

∫
X
bt dµa+σb+(σn−σ)b

= lim
n→∞

F (µa+σb+(σn−σ)b)

= F (µa+σb) = lim
t→∞

1

t

∫
X
bt dµa+σb = D(σ)

and so the derivative is continuous. �

4. Multifractal analysis

In this section we obtain an almost additive multifractal analysis for flows.
Let a = (at)t≥0 and b = (bt)t≥0 be almost additive families of continuous

functions in A(X) (see Section 3). We assume that

lim inf
t→∞

bt(x)

t
> 0 and bt(x) > 0 (14)

for every x ∈ X and t ≥ 0. Given α ∈ R, we consider the level set

Kα =

{
x ∈ X : lim

t→∞

at(x)

bt(x)
= α

}
. (15)

Proposition 8. For every x ∈ X and s ∈ R we have

lim sup
t→∞

at(x)

bt(x)
= lim sup

t→∞

at(φs(x))

bt(φs(x))
(16)

and

lim inf
t→∞

at(x)

bt(x)
= lim inf

t→∞

at(φs(x))

bt(φs(x))
. (17)

Proof. Since a and b are almost additive families with respect to Φ, there
exists C > 0 such that

−C + at−s(φs(x)) + as(x) ≤ at(x) ≤ as(x) + at−s(φs(x)) + C

and

−C + bt−s(φs(x)) + bs(x) ≤ bt(x) ≤ bs(x) + bt−s(φs(x)) + C

for all t ≥ s ≥ 0 and x ∈ X. Hence,

|at(x)− at−s(φs(x))| ≤ sup
t∈[0,s]

‖at‖∞ + C =: r1 <∞ (18)

and

|bt(x)− bt−s(φs(x))| ≤ sup
t∈[0,s]

‖bt‖∞ + C =: r2 <∞. (19)

By the first inequality in (14), we have lim inft→∞ bt(x) = +∞ for all x ∈ X.
Together with (18) and (19), this implies that

at(x)

bt(x)
≤ at−s(φs(x)) + r1

bt−s(φs(x))− r2
=

at−s(φs(x))

bt−s(φs(x))− r2
+

r1

bt−s(φs(x))− r2

and

at(x)

bt(x)
≥ at−s(φs(x))− r1

bt−s(φs(x)) + r2
=

at−s(φs(x))

bt−s(φs(x)) + r2
− r1

bt−s(φs(x)) + r2
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for any sufficiently large t > 0. Letting t→∞ we obtain

lim sup
t→∞

at(x)

bt(x)
= lim sup

t→∞

at−s(φs(x))

bt−s(φs(x))
= lim sup

t→∞

at(φs(x))

bt(φs(x))
(20)

and

lim inf
t→∞

at(x)

bt(x)
= lim inf

t→∞

at−s(φs(x))

bt−s(φs(x))
= lim inf

t→∞

at(φs(x))

bt(φs(x))
. (21)

Now take s < 0 and let y = φs(x). By (20) and (21) with x and s replaced,
respectively, by y and −s, we have

lim sup
t→∞

at(y)

bt(y)
= lim sup

t→∞

at(φ−s(y))

bt(φ−s(y))

and

lim inf
t→∞

at(y)

bt(y)
= lim inf

t→∞

at(φ−s(y))

bt(φ−s(y))
.

Since φ−s(y) = x, these identities yield (16) and (17) for s > 0. �

It follows readily from Proposition 8 that φs(Kα) = Kα for every s ∈ R.
In other words, the level sets are Φ-invariant.

Now we consider the function Fu(α) : R→ R defined by

Fu(α) = dimuKα.

It is called the u-dimension spectrum of the pair (a, b) with respect to Φ.
We also consider the map P : MΦ → R defined by

P(µ) =
limt→∞

1
t

∫
X at dµ

limt→∞
1
t

∫
X bt dµ

= lim
t→∞

∫
X at dµ∫
X bt dµ

.

By Proposition 4, this map is continuous and since MΦ is compact and
connected, the image P(MΦ) is also compact and connected.

The following theorem is our main result.

Theorem 9. Let Φ be a continuous flow on a compact metric space X such
that the map µ 7→ hµ(Φ) is upper semicontinuous and assume that

span{a, b, ū} ⊂ E(X).

If α /∈ P(MΦ), then Kα = ∅. Moreover, if α ∈ intP(MΦ), then Kα 6= ∅ and
the following properties hold:

(1) Fu(α) satisfies the variational principle

Fu(α) = max

{
hµ(Φ)∫
X u dµ

: µ ∈MΦ and P(µ) = α

}
; (22)

(2) Fu(α) = min{Su(α, q) : q ∈ R}, where Su(α, q) is the unique real
number such that

P
(
q(a− αb)− Su(α, q)ū

)
= 0;

(3) there exists an ergodic measure µα ∈ MΦ such that P(µα) = α,
µα(Kα) = 1 and

dimu µα =
hµα(Φ)∫
X u dµα

= Fu(α). (23)

In addition, the spectrum Fu is continuous on intP(MΦ).
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Proof. We follow the proof of Theorem 3 in [5] that considers the case of
discrete time.

Lemma 10. If α ∈ P(MΦ), then

inf
q∈R

P
(
q(a− αb)− Fu(α)ū

)
≥ 0.

Proof of the lemma. Take δ > 0 and N ∈ N. We define the set

Dδ,N =
{
x ∈ X : |at(x)− αbt(x)| < δt for t ≥ N

}
.

Write r = sups∈[0,1] ‖bs‖∞ + C. Note that

lim
t→∞

at(x)

bt(x)
= α (24)

for x ∈ Kα and given δ > 0, there exists N ∈ N such that∣∣∣∣at(x)

bt(x)
− α

∣∣∣∣ < δ

2r
(25)

for every t > N . Since b is almost additive, it follows from (12) that

bt(x) ≤ b[t](x) + bt−[t](φ[t](x)) + C

≤ [t](‖b1‖∞ + C) + r

≤ [t]r + r ≤ 2tr

(26)

for every x ∈ X and t > 0. By (25) and (26), we obtain

|at(x)− αbt(x)| < δ|bt(x)|
2r

≤ δt.

Therefore x ∈ Dδ,N and

Kα ⊂
⋂
δ>0

⋃
N∈N

Dδ,N .

By property (3), for each δ > 0 we have

lim
t→∞

γt(a, ε)

t
< δ

for any sufficiently small ε > 0. Therefore, γt(a, ε)/t < δ for large t and so

|at(z)− at(y)| < δt

for every z, y ∈ Bt(x, ε). This implies that

|a(x, t, ε)− at(y)| ≤ sup
z∈Bt(x,ε)

|at(z)− at(y)| ≤ δt

and, similarly,

|b(x, t, ε)− bt(y)| ≤ δt,
for x ∈ X and y ∈ Bt(x, ε). Given q ∈ R and y ∈ Bt(x, ε) ∩Dδ,N , we have

− [q(a− αb)] (x, t, ε) ≤ |q| · |a(x, t, ε)− αb(x, t, ε)|
≤ |q| · |a(x, t, ε)− at(y)|+ |q| · |at(y)− αbt(y)|

+ |q| · |αb(x, t, ε)− αbt(y)|
≤ |q|δt+ |q|δt+ |q| · |α|δt = (2 + |α|)|q|δt.
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Letting v = −Fu(α)ū, we obtain

v(x, t, ε)− λt = [v + q(a− αb)] (x, t, ε)− [q(a− αb)] (x, t, ε)− λt
≤ [v + q(a− αb)] (x, t, ε)− [λ− (2 + |α|)|q|δ] t

for every λ ∈ R. Consider a set Γ ⊂ X × [N,+∞) covering Dδ,N such that
Bt(x, ε) ∩Dδ,N 6= ∅ for every (x, t) ∈ Γ. Then∑

(x,t)∈Γ

exp (v(x, t, ε)− λt)

≤
∑

(x,t)∈Γ

exp ([v + q(a− αb)] (x, t, ε)− [λ− (2 + |α|)|q|δ] t) .

Taking the infimum over all countable sets Γ ⊂ X × [N,+∞) covering Dδ,N

and letting N →∞, we obtain

M(Dδ,N , v, λ, ε) ≤M
(
Dδ,N , v + q(a− αb), λ− (2 + |α|)|q|δ, ε

)
.

Therefore,

P (v|Dδ,N , ε) ≤ P ([v + q(a− αb)] |Dδ,N , ε) + (2 + |α|)|q|δ

and letting ε→ 0 we conclude that

P (v|Dδ,N ) ≤ P ([v + q(a− αb)] |Dδ,N ) + (2 + |α|)|q|δ

for q ∈ R and δ > 0. Now we observe that by Proposition 3, P (v|Kα) = 0.
On the other hand, if Z1 ⊂ Z2, then P (c|Z1) ≤ P (c|Z2) and for any countable
family of sets Zj , for j ∈ N, we have

P (c|⋃
j∈N
Zj) = sup

j∈N
P (c|Zj ),

for any family of continuous functions c = (ct)t≥0 with tempered variation
(see [8]). Hence,

0 = P (v|Kα) ≤ P (v|⋃
N∈NDδ,N

) = sup
N∈N

P (v|Dδ,N )

≤ sup
N∈N

P ([v + q(a− αb)] |Dδ,N ) + (2 + |α|)|q|δ

≤ P (v + q(a− αb)) + (2 + |α|)|q|δ

for every δ > 0 and q ∈ R. Since δ is arbitrary, we finally obtain

P
(
q(a− αb)− Fu(α)ū

)
≥ 0

for every q ∈ R. �

Lemma 11. If α ∈ intP(MΦ), then

min
q∈R

P
(
q(a− αb)− Fu(α)ū

)
= 0

and there exists an ergodic equilibrium measure µα ∈ MΦ with P(µα) = α,
µα(Kα) = 1 and

dimu µα =
hµα(Φ)∫
X u dµα

= Fu(α).
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Proof of the lemma. Denote by r the distance from α to R \ P(MΦ) and let

L(q) = P
(
q(a− αb)− Fu(α)ū

)
for every q ∈ R. For β ∈ R with β = α+ r(sgn q)/2, we have

|β − α| =
∣∣∣∣r(sgn q)

2

∣∣∣∣ =
r

2
< r,

which implies that β ∈ P(MΦ). This implies that there exists µ ∈ MΦ

satisfying

P(µ) =
limt→∞

1
t

∫
X at dµ

limt→∞
1
t

∫
X bt dµ

= β,

that is,

lim
t→∞

1

t

∫
X
at dµ = lim

t→∞

1

t

∫
X
βbt dµ. (27)

Note that the family q(a−αb)−Fu(α)ū is almost additive and has tempered
variation. Since

sup
t∈[0,s]

‖at‖∞ <∞, sup
t∈[0,s]

‖bt‖∞ <∞, sup
t∈[0,s]

‖ut‖∞ <∞

for some number s > 0, we also have

sup
t∈[0,s]

‖q(at − αbt)− Fu(α)ut‖∞ <∞.

It follows from Theorem 5 that

L(q) ≥ hµ(Φ) + lim
t→∞

1

t

∫
X

[q(at − αbt)− Fu(α)ut] dµ

= hµ(Φ) + lim
t→∞

1

t
q

∫
X

(at − αbt) dµ− Fu(α) lim
t→∞

1

t

∫
X
ut dµ.

(28)

Since

q

∫
X

(β − α)bt dµ =
q(sgn q)r

2

∫
X
bt dµ =

|q|r
2

∫
X
bt dµ,

we have

1

t
q

∫
X

(at − αbt) dµ =
1

t
q

∫
X

(at − βbt) dµ+
|q|r
2

1

t

∫
X
bt dµ.

Finally, letting t→∞ and using (27), we obtain

lim
t→∞

1

t
q

∫
X

(at − αbt) dµ =
|q|r
2

lim
t→∞

1

t

∫
X
bt dµ. (29)

By Birkhoff’s ergodic theorem, we have

lim
t→∞

1

t

∫
X
ut dµ =

∫
X

lim
t→∞

1

t

∫ t

0
(u ◦ φs) ds dµ =

∫
X
u dµ

and since hµ(Φ) ≥ 0, it follows from (28) and (29) that

L(q) ≥ |q|r
2

lim
t→∞

1

t

∫
X
bt dµ− Fu(α)

∫
X
u dµ. (30)

On the other hand, by (14) we have

lim
t→∞

1

t

∫
X
bt dµ > 0.
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This implies that the right-hand side of (30) takes arbitrary large values for
|q| large and so there exists q̄ > 0 with L(q) ≥ L(0) for q ∈ R with |q| ≥ q̄.

Since span{a, b, ū} ⊂ E(X), by Proposition 6 the function q 7→ L(q) is
of class C1. Therefore, L attains a minimum at some point q = q(α) with
|q(α)| ≤ q̄ and so (dL/dq)(q(α)) = 0. Now let µα be the equilibrium measure
of the family q(α)(a− αb)− Fu(α)ū. Again by Proposition 6, we have

0 =
d

dq
L(q)|q=q(α) = lim

t→∞

1

t

∫
X

(at − αbt) dµα (31)

and thus,

P(µα) =
limt→∞

1
t

∫
X at dµα

limt→∞
1
t

∫
X bt dµα

= α.

Moreover,

L(q(α)) = P
(
q(α)(a− αb)− Fu(α)ū

)
= hµα(Φ) + lim

t→∞

1

t

∫
X

(at − αbt) dµα − Fu(α) lim
t→∞

1

t

∫
X
ut dµα

= hµα(Φ)− Fu(α)

∫
X
u dµα.

It follows from Lemma 10 that L(q(α)) ≥ 0 and so

Fu(α) ≤ hµα(Φ)∫
X u dµα

. (32)

Proposition 6 also says that µα is ergodic and so it follows from (5) that

dimu µα =
hµα(Φ)∫
X u dµα

. (33)

By (31) and Proposition 4, we have µα(Kα) = 1. This implies that

dimu µα ≤ dimuKα = Fu(α),

which together with (32) and (33) gives dimu µα = Fu(α). Hence,

min
q∈R

P
(
q(a− αb)− Fu(α)ū

)
= L(q(α))

= hµα(Φ)− Fu(α)

∫
X
u dµα

= hµα(Φ) −
hµα(Φ)∫
X u dµα

∫
X
u dµα = 0,

(34)

which yields the desired statement. �

We proceed with the proof of the theorem. Take α ∈ R such that Kα 6= ∅.
Given x ∈ X, we consider the family (µx,t)t>0 of probability measures on X
defined by

µx,t =
1

t

∫ t

0
δφs(x) ds,

where δy is the probability measure concentrated at y. Let V (x) be the set
of all sublimits of this family in the weak∗ topology. Then ∅ 6= V (x) ⊂MΦ.
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For each µ ∈ V (x) there exists an increasing sequence (tn)n∈N such that

lim
n→∞

atn(x)

tn
= lim

t→∞

1

t

∫
X
at dµ and lim

n→∞

btn(x)

tn
= lim

t→∞

1

t

∫
X
bt dµ (35)

(see [9]). It follows from (24) and (35) that

P(µ) = lim
t→∞

∫
X at dµ∫
X bt dµ

=
limt→∞

1
t

∫
X at dµ

limt→∞
1
t

∫
X bt dµ

= lim
n→∞

atn(x)

btn(x)
= α,

which shows that α ∈ P(MΦ).
Now take α ∈ intP(MΦ) and µ ∈ MΦ such that P(µ) = α. By Proposi-

tion 4, the map

µ 7→ lim
t→∞

1

t

∫
X
ut dµ =

∫
X
u dµ

is continuous and by hypothesis, the map µ 7→ hµ(Φ) is upper semicontinu-
ous. Therefore, the function µ 7→ hµ(Φ)/

∫
X u dµ is upper semicontinuous.

Since P is continuous and MΦ is compact, there exists the maximum in (22).
By Theorem 5 and Lemma 11, we have

0 = inf
q∈R

P
(
q(a− αb)− Fu(α)ū

)
≥ inf

q∈R

{
hµ(Φ) + lim

t→∞

1

t

∫
X

[q(at − αbt)− Fu(α)ut] dµ

}
.

It follows from P(µ) = α that

lim
t→∞

1

t

∫
X

(at − αbt) dµ = 0

and so

0 ≥ inf
q∈R

{
hµ(Φ)− lim

t→∞

1

t

∫
X
Fu(α)ut dµ

}

= hµ(Φ)− Fu(α) lim
t→∞

1

t

∫
X
ut dµ

= hµ(Φ)− Fu(α)

∫
X
u dµ.

Hence,

Fu(α) ≥ hµ(Φ)∫
X u dµ

. (36)

Again by Lemma 11, there exists an ergodic equilibrium measure µα such
that P(µα) = α, µα(Kα) = 1 and

Fu(α) =
hµα(Φ)∫
X u dµα

= dimu µα.

Together with (36) this yields identities (22) and (23). In particular, Kα 6= ∅.
Now we establish property 2 in the theorem. By (34), we have

P
(
q(α)(a− αb)− Fu(α)ū

)
= min

q∈R
P
(
q(a− αb)− Fu(α)ū

)
= 0,

which gives

Fu(α) = Su(α, q(α)) ≥ inf
q∈R

{
Su(α, q) : q ∈ R

}
.
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On the other hand, by the definition of Su and again by Lemma 11, we
obtain

P
(
q(a− αb)− Su(α, q)ū

)
= 0 ≤ P

(
q(a− αb)− Fu(α)ū

)
for every q ∈ R. Let µq be the equilibrium measure of q(a− αb)− Fu(α)ū.
Then

0 ≤ P
(
q(a− αb)− Fu(α)ū

)
− P

(
q(a− αb)− Su(α, q)ū

)
≤ P

(
q(a− αb)− Fu(α)ū

)
−
[
hµq(Φ) + lim

t→∞

1

t

∫
X

[q(at − αbt)− Su(α, q)ut] dµq

]
= hµq(Φ) + lim

t→∞

1

t

∫
X

[q(at − αbt)− Fu(α)ut] dµq − hµq(Φ)

− lim
t→∞

1

t

∫
X

[q(at − αbt)] dµq + Su(α, q) lim
t→∞

1

t

∫
X
ut dµq

=
[
Su(α, q)− Fu(α)

]
lim
t→∞

1

t

∫
X
ut dµq

=
[
Su(α, q)− Fu(α)

] ∫
X
u dµq.

Since u > 0, we obtain Su(α, q)− Fu(α) ≥ 0 for every q ∈ R. Therefore,

Fu(α) ≤ inf
{
Su(α, q) : q ∈ R

}
.

Finally, we show that the spectrum is continuous. Given α ∈ intP(MΦ),
let (αn)n∈N be a sequence in intP(MΦ) converging to α. Given n ∈ N,
take qn ∈ R such that Fu(αn) = Su(αn, qn) and take q(α) ∈ R such that
Fu(α) = Su(α, q(α)). By the second property in the theorem, we have

Fu(αn) = min
q∈R

Su(αn, q) ≤ Su(αn, q(α)). (37)

On the other hand, by Proposition 6, the function

(q, α, p) 7→ P
(
q(a− αb)− pū

)
is of class C1 and by the Implicit function theorem, (α, q) 7→ Su(α, q) is also
of class C1. It follows from (37) that

lim sup
n→∞

Fu(αn) ≤ lim sup
n→∞

Su(αn, q(α)) = Su(α, q(α)) = Fu(α).

Moreover, since Fu(α) is a minimum, we have

Fu(α) = min
q∈R

Su(α, q) ≤ Su(α, qn)

for every n ∈ N and so

Fu(α) ≤ lim inf
n→∞

Su(αn, qn) = lim inf
n→∞

Fu(αn).

This completes the proof of the theorem. �

We are not aware whether the ergodic measures µα satisfying (23) that are
constructed in the proof are unique under reasonable general assumptions.
Any such assumptions on this respect would be quite welcome.
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5. Applications of Theorem 9

In this section we describe a few classes of flows and of almost additive
families of continuous functions to which Theorem 9 applies. We start by
introducing the notions of hyperbolicity and Markov system.

5.1. Hyperbolic sets and Markov systems. Let Φ be a C1 flow on a
smooth manifold M . A compact Φ-invariant set Λ ⊂M is called a hyperbolic
set for Φ if there exists a splitting

TΛM = Es ⊕ Eu ⊕ E0

and constants c > 0 and λ ∈ (0, 1) such that for each x ∈ Λ:

(1) the vector (d/dt)φt(x)|t=0 generates E0(x);
(2) for each t ∈ R we have

dxφtE
s(x) = Es(φt(x)) and dxφtE

u(x) = Eu(φt(x));

(3) ‖dxφtv‖ ≤ cλt‖v‖ for v ∈ Es(x) and t > 0;
(4) ‖dxφ−tv‖ ≤ cλt‖v‖ for v ∈ Eu(x) and t > 0.

Given a hyperbolic set Λ and ε > 0, for each x ∈ Λ let V s(x) and V u(x) be
the largest connected components of the sets

As(x) =
{
y ∈ B(x, ε) : d(φt(y), φt(x))↘ 0 when t→ +∞

}
and

Au(x) =
{
y ∈ B(x, ε) : d(φt(y), φt(x))↘ 0 when t→ −∞

}
that contain x. Given a locally maximal hyperbolic set Λ (this means that
Λ =

⋂
t∈R φt(U) for some open neighborhood U of Λ) and a sufficiently small

ε > 0, there exists δ > 0 such that if x, y ∈ Λ satisfy d(x, y) ≤ δ, then there
exists a unique t = t(x, y) ∈ [−ε, ε] such that

[x, y] := V s(φt(x)) ∩ V u(y)

is a single point in Λ.
Now we recall the notion of a Markov system. Consider an open smooth

disk D ⊂M of dimension dimM−1 that is transverse to Φ and take x ∈ D.
Let U(x) be an open neighborhood of x diffeomorphic to D × (−ε, ε). We
say that a closed set R ⊂ Λ∩D is a rectangle if R = intR and πD([x, y]) ∈ R
for x, y ∈ R. Now consider rectangles R1, . . . , Rk ⊂ Λ such that

Ri ∩Rj = ∂Ri ∩ ∂Rj for i 6= j

and let Z =
⋃k
i=1Ri. We assume that Λ =

⋃
t∈[0,ε] φt(Z) and that either

φt(Ri) ∩Rj = ∅ for all t ∈ [0, ε]

or

φt(Rj) ∩Ri = ∅ for all t ∈ [0, ε]

whenever i 6= j. We define a function τ : Λ→ R+
0 by

τ(x) = min{t > 0 : φt(x) ∈ Z}
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and a map T : Λ → Z by T (x) = φτ(x)(x). The restriction TZ of T to Z is
invertible and Tn(x) = φτn(x)(x), where

τn(x) =
n−1∑
i=0

τ(T i(x)).

The collection R1, . . . , Rk is said to be a Markov system for Φ on Λ if

T (int(V s(x) ∩Ri)) ⊂ int(V s(T (x)) ∩Rj)
and

T−1(int(V u(T (x)) ∩Rj)) ⊂ int(V u(x) ∩Ri)
for every x ∈ intT (Ri) ∩ intRj and i, j = 1, . . . , k. By work of Bowen [14]
and Ratner [21], any locally maximal hyperbolic set Λ has Markov systems
of arbitrarily small diameter and the function τ is always Hölder continuous
on each domain of continuity.

Given a Markov system R1, . . . , Rk for a flow Φ on a locally maximal
hyperbolic set Λ, we consider the k × k matrix A with entries

aij =

{
1 if intT (Ri) ∩Rj 6= ∅,
0 otherwise.

We also consider the set

ΣA =
{

(· · · i−1i0i1 · · · ) : ainin+1 = 1 for n ∈ Z
}
⊂ {1, . . . , k}Z

and the shift map σ : ΣA → ΣA defined by σ(· · · i0 · · · ) = (· · · j0 · · · ), where
jn = in+1 for each n ∈ Z. Finally, we define a coding map π : ΣA → Z by

π(· · · i0 · · · ) =
⋂
n∈Z

Ri−n···in ,

where Ri−n···in =
⋂n
l=−n T

−l
Z intRil . The following properties hold:

(1) π ◦ σ = T ◦ π;
(2) π is Hölder continuous and onto;
(3) π is one-to-one on a full measure set with respect to any ergodic

measure of full support and on a residual set.

Now let µ be a TZ-invariant probability measure on Z. One can show
that µ induces a Φ-invariant probability measure ν on Λ such that∫

Λ
g dν =

∫
Z

∫ τ(x)
0 (g ◦ φs)(x) ds dµ∫

Z τ dµ
(38)

for any continuous function g : Λ→ R. Moreover, any Φ-invariant probabil-
ity measure ν on Λ is of this form for some TZ-invariant probability measure
µ on Z. Abramov’s entropy formula says that

hν(Φ) =
hµ(TZ)∫
Z τ dµ

. (39)

By (38) and (39) we obtain

hν(Φ) +

∫
Λ
g dν =

hµ(TZ) +
∫
Z Ig dµ∫

Z τ dµ
, (40)

where Ig(x) =
∫ τ(x)

0 (g ◦ φs)(x) ds.
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5.2. Examples. In this section we describe two scenarios to which Theo-
rem 9 applies: locally maximal hyperbolic sets and suspension flows over
expansive maps with specification.

For the second scenario, we need to recall the notion of a suspension flow.
Let T : X → X be a homeomorphism on a compact metric space and let
τ : X → R+ be a Lipschitz function. Consider the space

W = {(x, s) ∈ X × R : 0 ≤ s ≤ τ(x)}
and let Y be the set obtained from W identifying (x, τ(x)) and (T (x), 0)
for each x ∈ X. Then a certain distance introduced by Bowen and Walters
in [16] makes Y a compact topological space. The suspension flow over T
with height function τ is the flow Ψ = (ψ)t∈R on Y with the maps ψt : Y → Y
defined by ψt(x, s) = (x, s+ t). We note that the identities in (38), (39) and
(40) still hold for suspension flows (with Λ and Z replaced, respectively, by
the sets Y and X).

Now we present two scenarios to which Theorem 9 applies.

Locally maximal hyperbolic sets. If Λ is a locally maximal hyperbolic set for
a C1 flow Φ such that Φ|Λ is topologically mixing, then the entropy map
µ 7→ hµ(Φ|Λ) is upper-semicontinuous. Moreover, if the almost additive
families of continuous functions a and b have bounded variation and u is
Hölder continuous, then Theorem 12 in [9] shows that span{a, b, u} ⊂ E(Λ).
We recall that a family of functions a is said to have bounded variation if
for every κ > 0 there exists ε > 0 such that

|at(x)− at(y)| < κ whenever y ∈ Bt(x, ε).

Suspension flows over expansive maps with specification. Let X = (X, d)
be a compact metric space and let T : X → X be a continuous expansive
map with the specification property. We recall that a map T is said to be
expansive if there exists c > 0 such that if d(Tn(x), Tn(y)) < c for all n ≥ 0,
then x = y. Moreover, a map T is said to have the specification property
if for each ε > 0 there exists m = m(ε) ∈ N such that given intervals
Ij = [aj , bj ] with aj , bj ∈ N for j = 1, . . . , k such that

d(Ii, Ij) ≥ m(ε) whenever i 6= j

and given points x1, . . . , xk ∈ X there exists x ∈ X such that

d(T p+aj (x), T p(xj)) < ε

for p = 0, . . . , bj − aj and j = 1, . . . , k. Examples of continuous expansive
maps T with the specification property include for example repellers, locally
maximal hyperbolic sets and topological Markov chains.

Now let Φ be a suspension flow over such a map T . Then Φ is an expansive
flow and so the entropy map µ 7→ hµ(Φ) is upper-semicontinuous. Moreover,
if the almost additive families of continuous functions a and b as well as u
have bounded variation, then one can show that span{a, b, u} ⊂ E(X).

5.3. Cocycles and top Lyapunov exponent. Let Φ = (φt)t∈R be a con-
tinuous flow on a compact metric space M . Moreover, let GL(d,R) be the
set of all invertible d×d matrices. A continuous map A : R×M → GL(d,R)
is called a linear cocycle over Φ if for all t, s ∈ R and x ∈ X we have:
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(1) A(0, x) = Id;
(2) A(t+ s, x) = A(s, φt(x))A(t, x).

We shall always assume that all entries aij(t, x) of A(t, x) are positive for
every (t, x) ∈ R×M . Moreover, for definiteness we shall consider the norm

on GL(d,R) defined by ‖A‖ =
∑d

i,j=1 |aij |, denoting by aij the entries of A.

Now we consider the family of functions a := (at)t≥0 defined by

at(x) = log ‖A(t, x)‖.

Proposition 12. The sequence a is almost additive with respect to Φ.

Proof. To the possible extent, we follow the proof of Lemma 2.1 in [17].
Take s0 > 0. Since the map (t, x) 7→ A(t, x) is continuous, we have

sup
(t,x)∈N

‖A(t, x)‖ <∞,

where N = [0, s0]×M . Together with the assumption that all entries of the
matrices A(t, x) are positive, this implies that

min
(t,x)∈N

aij(t, x) > 0 and max
(t,x)∈N

aij(t, x) <∞

for all i, j. Hence, there exists K > 0 (possibly depending on s0) such that

1 ≥
min(t,x)∈N aij(t, x)

max(t,x)∈N akl(t, x)
≥ K

for all i, j, k, l. Then

aij(t, x) ≥ c(JA(t, x))ij for each i, j = 1, . . . , d,

where c = K/d and where J is the d × d matrix with all entries equal 1.
Now note that

A(t, x) = A(t− s0 + s0, x) = A(s0, x)A(t− s0, φs0(x)).

Hence, denoting by z the d× 1 vector with all entries equal to 1, we have

‖A(t+ s, x)‖ = ‖A(s, φt(x))A(s0, x)A(t− s0, φs0(x))‖
≥ ‖A(s, φt(x))cJA(s0, x)A(t− s0, φs0(x))‖
= c‖A(s, φt(x))JA(t, x)‖
= cztA(s, φt(x))JA(t, x)z

= c(ztA(s, φt(x))z)(ztA(t, x)z)

= c‖A(s, φt(x))‖ · ‖A(t, x)‖.

Then

log ‖A(t+ s, x)‖ ≥ log c+ log ‖A(s, φt(x))‖+ log ‖A(t, x)‖

and since K ≤ 1, we obtain C = − log c > 0. On the other hand, we have

‖A(t+ s, x)‖ ≤ ‖A(s, φt(x))‖ · ‖A(t, x)‖

for every t, s ∈ R and x ∈M . Therefore,

−C + at(x) + as(φt(x)) ≤ at+s(x) ≤ at(x) + as(φt(x)) + C

for every t, s ≥ 0 and x ∈M . �
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Following [7], we say that A has tempered distortion if

lim sup
t→∞

1

t
log sup

{
‖A(t, x)A(t, y)−1‖ : z ∈M and x, y ∈ Bt(z, ε)

}
= 0

for some ε > 0. Moreover, we say that A has bounded distortion if

sup
{
‖A(t, x)A(t, y)−1‖ : z ∈M and x, y ∈ Bt(z, ε)

}
<∞

for some ε > 0. Clearly, bounded distortion implies tempered distortion.
Now observe that

‖A(t, x)A(t, x)−1‖ = ‖Id‖ = d

for every (t, x) ∈ R×M , which implies that

‖A(t, x)−1‖ ≥ d‖A(t, x)‖−1.

Therefore,

‖A(t, x)A(t, y)−1‖ ≥ K

d
‖A(t, x)‖ · ‖A(t, y)−1‖

≥ K‖A(t, x)‖ · ‖A(t, y)‖−1

and so∣∣log ‖A(t, x)‖ − log ‖A(t, y)‖
∣∣ ≤ − logK + log ‖A(t, x)A(t, y)−1‖.

In particular, for z ∈M and ε > 0 we have

sup
x,y∈Bt(z,ε)

|at(x)− at(y)| ≤ − logK + log sup
x,y∈Bt(z,ε)

‖A(t, x)A(t, y)−1‖.

Hence, if A has tempered distortion, then a has tempered variation, and if
A has bounded distortion, then a has bounded variation.

For a specific example, one can consider a C1 flow Φ on a compact set
M ⊂ Rd such that for every t ∈ R and x ∈ M the matrix dxφt has only
positive entries. Then A(t, x) = dxφt is a linear cocycle over Φ and the
family a defined by at(x) = log ‖dxφt‖ is an almost additive family of con-
tinuous functions with respect to Φ (by Proposition 12). In particular, for
the family b defined by bt = t, the set Kα in (15) is a level set of the top
Lyapunov exponent for the flow Φ. Thus, in this case Theorem 9 can be
applied to give a multifractal analysis of the top Lyapunov exponent.

6. Irregular sets

In this section we study the u-dimension of the irregular sets obtained
from almost additive families of functions on locally maximal hyperbolic sets.

Let Λ ⊂ M be a locally maximal hyperbolic set for a C1 flow Φ such
that Φ|Λ is topologically mixing and let u be a Hölder continuous function
with PΦ(u) = 0. Moreover, we consider two families of continuous functions
a, b ∈ A(M).

Given a Markov system R1, . . . , Rk for Φ on Λ, let Z =
⋃k
i=1Ri and

consider the associated map TZ introduced in Section 5.1. We also consider
the sequences of functions c = (cn)n∈N and d = (dn)n∈N on Z defined by

cn(x) = aτn(x)(x) and dn(x) = bτn(x)(x)

for every x ∈ Z and n ∈ N. The families of functions c and d are almost
additive with respect to the map TZ (see Lemma 9 in [9]).
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We also consider the irregular sets given by

CΦ =

{
x ∈ Λ : lim inf

t→∞

at(x)

bt(x)
< lim sup

t→∞

at(x)

bt(x)

}
and

CTZ =

{
x ∈ Z : lim inf

n→∞

cn(x)

dn(x)
< lim sup

n→∞

cn(x)

dn(x)

}
.

Since the coding map π : ΣA → Z is onto, we have π(Cσ) = CTZ , where

Cσ =

{
ω ∈ ΣA : lim inf

n→∞

(cn ◦ π)(ω)

(dn ◦ π)(ω)
< lim sup

n→∞

(cn ◦ π)(ω)

(dn ◦ π)(ω)

}
.

The following theorem is the main result of this section.

Theorem 13. Let Λ ⊂M be a locally maximal hyperbolic set for a C1 flow
Φ such that Φ|Λ is topologically mixing and let u be a Hölder continuous
function with PΦ(u) = 0. If a, b, ū ∈ A(M) are families of continuous
functions with bounded variation such that P(νu) ∈ intP(MΦ) for the unique
equilibrium measure νu for u, then

dimuCΦ = dimu Λ.

Proof. By (40), if PΦ(u) = 0, then νu is the unique equilibrium measure
for u if and only if the induced measure µu on Z is the unique equilibrium
measure for Iu. Since every linear combination v of the families a, b and ū
has bounded variation and satisfies supt∈[0,s] ‖vt‖∞ < ∞ for some s > 0,

it follows from Theorem 12 in [9] that span{a, b, ū} ⊂ E(M).
We continue with an auxiliary result.

Lemma 14. For every x ∈ Z we have

lim sup
t→∞

at(x)

bt(x)
= lim sup

n→∞

cn(x)

dn(x)
(41)

and

lim inf
t→∞

at(x)

bt(x)
= lim inf

n→∞

cn(x)

dn(x)
. (42)

Proof of the lemma. For each t > 0 there exists a unique n ∈ N such that
τn(x) ≤ t < τn+1(x) and so t− τn(x) ∈ [0, sup τ). Since the families a and b
are almost additive, there exists C > 0 such that

−C + aτn(x)(x) + at−τn(x)(x) ≤ at(x) ≤ aτn(x)(x) + at−τn(x)(x) + C

and

−C + bτn(x)(x) + bt−τn(x)(x) ≤ bt(x) ≤ bτn(x)(x) + bt−τn(x)(x) + C.

This implies that∣∣at(x)− aτn(x)(x)
∣∣ ≤ sup

s∈[0,sup τ ]
‖as‖∞ + C =: q1 <∞ (43)

and ∣∣bt(x)− bτn(x)(x)
∣∣ ≤ sup

s∈[0,sup τ ]
‖bs‖∞ + C =: q2 <∞. (44)
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It follows from (14), (43) and (44) that

at(x)

bt(x)
≤

aτn(x)(x)

bτn(x)(x)− q2
+

q1

bτn(x)(x)− q2

and
at(x)

bt(x)
≥

aτn(x)(x)

bτn(x)(x) + q2
− q1

bτn(x)(x) + q2

for all sufficiently large n. Finally, since t→∞ implies n→∞ (τn(x)→∞)
and vice-versa, we conclude that (41) and (42) hold for every x ∈ Z. �

It follows directly from Proposition 8 that the set CΦ is Φ-invariant. By
Lemma 14 and again by Proposition 8, we obtain

lim sup
n→∞

cn(TZ(x))

dn(TZ(x))
= lim sup

n→∞

cn(x)

dn(x)

and

lim inf
n→∞

cn(TZ(x))

dn(TZ(x))
= lim inf

n→∞

cn(x)

dn(x)
,

which implies that the set CTZ is TZ-invariant.
We also recall the notion of u-dimension for maps. Let f : X → X be a

continuous map and let V be a finite open cover of X. Given k ∈ N, we
denote by Wk(V) the collection of strings (V1, V2, . . . , Vk) of elements of V.
For each V ∈Wk(V), we consider the open set

X(V ) =
{
x ∈ X : x ∈ V1, f(x) ∈ V2, . . . , f

k−1(x) ∈ Vk
}
.

Let u : X → R be a positive continuous function. Given B ⊂ X and α ∈ R,
we define

N(B,α, u,V) = lim
n→∞

inf
Γ

∑
V ∈Γ

exp(−αu(V )),

where

u(V ) = sup
x∈X(V )

n−1∑
k=0

u(fk(x))

and with the infimum taken over all collections Γ ⊂
⋃
k≥nWk(V) such that

B ⊂
⋃
V ∈ΓX(V ). We also define

dimu,VB = inf
{
α ∈ R : N(B,α, u,V) = 0

}
.

One can show that the limit

dimuB = lim
diamV→0

dimu,VB

exists and we call it the u-dimension of the set B with respect to f . Anal-
ogously, for X = Z and a subset B ⊂ Z, we define

Nα(B) = lim
l→∞

inf
Γ′

∑
R∈Γ′

exp

(
−α sup

x∈R

m(R)−1∑
k=0

Iu(T kZ(x))

)
,

where each Γ′ is a cover of B by sets Ri0···im =
⋂m
l=0 T

−l
Z intRil with m ≥ l.

Given B ⊂ Z, let

SB =
{
y = φs(x) ∈ Λ : x ∈ B and s ∈ [0, τ(x)]

}
.
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Lemma 15. For any set B ⊂ Z we have

dimu SB = inf
{
α ∈ R : Nα(B) = 0

}
.

Proof of the lemma. For every x ∈ Λ and n ∈ N, we have∫ τn(x)

0
(u ◦ φs)(x)ds =

n−1∑
k=0

∫ τk+1(x)

τk(x)
(u ◦ φs)(x)ds

=

n−1∑
k=0

∫ τ(Tk(x))

0
(u ◦ φs)(T k(x))ds

=

n−1∑
k=0

(Iu ◦ T k)(x).

(45)

Given t > 0, there exists a unique n ∈ N such that t = τn(x) + κ for some
κ ∈ [0, sup τ). Hence, it follows from (45) that∣∣∣∣∣

∫ t

0
(u ◦ φs)(x)ds−

n−1∑
k=0

(Iu ◦ T kZ)(x)

∣∣∣∣∣
=

∣∣∣∣∣
∫ t

0
(u ◦ φs)(x)ds−

∫ τn(x)

0
(u ◦ φs)(x)ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ t

τn(x)
(u ◦ φs)(x)ds

∣∣∣∣∣ ≤ (supu)(sup τ) =: κ.

(46)

Assume that ⋃
(x,t)∈Γ

Bt(x, ε) ⊃ SB.

For each (x, t) ∈ Γ take ω = (· · · i0(x) · · · ) ∈ ΣA with π(ω) = x. Moreover,
let R(x) = Ri0(x)···im(x)(x), where m(x) ∈ N is the unique integer such that

t = τm(x)(x) + κ for some κ ∈ [0, sup τ). Then

Γ′ = {R(x) : (x, t) ∈ Γ}
is a cover of B and so it follows readily from (46) that

Nα(B) ≤ eκN(SB, u, α, ε). (47)

On the other hand, if the sets R(x) = Ri0(x)···im(x)(x) form a cover of B for

x ∈ C ⊂ Z and some integers m(x) ∈ N for each x ∈ C, then⋃
x∈C

Bτm(x)−1(x)(x, ε) ⊃ SB

assuming that the elements of the Markov system have diameter at most ε.
Again, it follows from (46) that

N(SB, u, α, ε) ≤ eκNα(B),

which together with (47) yields the desired result. �

Now we consider the map Pc,d : MTZ → R given by

Pc,d(ν) =
limn→∞

1
n

∫
Z cn dν

limn→∞
1
n

∫
Z dn dν

=
limn→∞

∫
Z cn dν

limn→∞
∫
Z dn dν

.
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Lemma 16. Assume that TZ is topologically mixing and let µu be the unique
equilibrium measure of Iu. If Pc,d(µu) ∈ intPc,d(MTZ ), then

dimIu CTZ = dimIu Z.

Proof of the lemma. The map π is an homeomorphism on a set Z̃ ⊂ Z

satisfying µu(Z̃) = 1. Consider the measure mu on ΣA defined by mu(B) =
µu(π(B)) for every Borel set B ⊂ ΣA. Since µu is an equilibrium measure
for Iu, we have

0 = PTZ (Iu) = hµu(TZ) +

∫
Z
Iu dµu

= hµu(T
Z̃

) +

∫
Z̃
Iu dµu

= hmu(σ) +

∫
ΣA

Iu ◦ π dmu.

Moreover,
0 = PTZ (Iu) ≥ PT

Z̃
(Iu) = Pσ(Iu ◦ π).

This implies that

Pσ(Iu ◦ π) = hmu(σ) +

∫
ΣA

Iu ◦ π dmu = 0

and so mu is an equilibrium measure for Iu◦π. By Proposition 18 in [10], the
function Iu ◦ π is Hölder continuous and since σ|ΣA is topologically mixing,

mu is the unique equilibrium measure for Iu ◦π. Since c ◦π, d ◦π and Iu ◦ π
have bounded variation, we also have

span
{
c ◦ π, d ◦ π, Iu ◦ π

}
⊂ Eσ(ΣA).

Now consider the set

π∗MTZ :=
{
m ∈Mσ : m = π∗µ for some µ ∈MTZ

}
.

Since mu ∈ π∗MTZ , we obtain

Pc◦π,d◦π(mu) = Pc,d(µu) ∈ intPc,d(MTZ ) = intPc◦π,d◦π(π∗MTZ ),

which implies that Pc◦π,d◦π(mu) ∈ intPc◦π,d◦π(Mσ). We shall use the fol-
lowing result.

Lemma 17 ([5, Theorem 4]). Assume that σ : ΣA → ΣA is topologically
mixing and let mu be the unique equilibrium measure for Iu ◦ π. If

span
{
c ◦ π, d ◦ π, Iu ◦ π

}
⊂ Eσ(ΣA)

and Pc◦π,d◦π(mu) ∈ intPc◦π,d◦π(Mσ), then

dimIu◦π Cσ = dimIu◦π ΣA.

Moreover, it follows from Corollary 5.4 in [24] that

dimu π(B) = dimu◦π B

for every set B ⊂ ΣA. Hence, by Lemma 17 we obtain

dimIu Z = dimIu π(ΣA) = dimIu◦π ΣA

= dimIu◦π Cσ = dimIu π(Cσ) = dimIu CTZ ,

which yields the desired result. �
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We proceed with the proof of the theorem. By Lemma 15, we have

dimu Λ = dimu

{
φs(x) ∈ Λ : x ∈ Z and s ∈ [0, τ(x)]

}
= inf

{
α ∈ R : Nα(Z) = 0

}
= dimIu Z.

It follows from Proposition 8 together with Lemmas 14 and 15 that

dimuCΦ = dimu

{
φs(x) ∈ Λ : x ∈ CTZ and s ∈ [0, τ(x)]

}
= inf

{
α ∈ R : Nα(CTZ ) = 0

}
= dimIu CTZ .

Finally, by Lemma 16 we conclude that

dimu Λ = dimIu Z = dimIu CTZ = dimuCΦ.

This completes the proof of the theorem. �

We note that the hypothesis in Theorem 13 that Φ|Λ is topologically mix-
ing ensures that TZ is also topologically mixing, which in its turn guarantees
the uniqueness of the equilibrium measures for TZ and for the symbolic dy-
namics. Moreover, the set intP(MΦ) is assumed to be nonempty in the the-
orem. It is this property that ensures that the irregular set CΦ is nonempty
and ultimately that it can have positive and in fact full u-dimension (as an
application of Lemma 17 that contains a corresponding statement for sym-
bolic dynamics).
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