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Abstract. We introduce a version of the nonadditive topological pres-
sure for flows and we describe some of its main properties. In particular,
we discuss how the nonadditive topological pressure varies with the data
and we establish a variational principle in terms of the Kolmogorov–Sinai
entropy. We also consider corresponding capacity topological pressures.
In the particular case of subadditive families of functions we give a sim-
pler characterization of these pressures. To the possible extent we follow
corresponding arguments for maps, although various proofs require non-
trivial modifications.

1. Introduction

The thermodynamic formalism can be described as a rigorous study of
certain mathematical structures inspired by thermodynamics. This includes
the notion of the topological pressure of a continuous function, introduced
by Ruelle in [14] for expansive maps and by Walters in [17] in the general
case. Given a continuous map f : X → X on a compact metric space, the
topological pressure of a continuous function ϕ : X → R (with respect to f)
is defined by

P (ϕ) = lim
ε→0

lim sup
n→∞

1

n
log sup

E

∑
x∈E

exp
n−1∑
k=0

ϕ(fk(x)),

with the supremum taken over all (n, ε)-separated sets E ⊂ X. We recall
that a set E ⊂ X is said to be (n, ε)-separated if for any x, y ∈ E with x 6= y
there exists k ∈ {0, . . . , n− 1} such that

d(fk(x), fk(y)) > ε.

Taking ϕ = 0 we recover the notion of the topological entropy h(f) of the
map f given by

h(f) = lim
ε→0

lim sup
n→∞

1

n
logN(n, ε),

where N(n, ε) denotes the maximal cardinality of an (n, ε)-separated set.
The theory comprising the thermodynamic formalism and its many appli-

cations is a quite active and broad independent field, with many directions of
research. For example, consider the variational principle for the topological
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pressure, established by Ruelle in [14] for expansive maps and by Walters
in [17] in the general case. It says that

P (ϕ) = sup
µ

(
hµ(f) +

∫
X
ϕdµ

)
,

with the supremum taken over all f -invariant probability measures µ on X
and where hµ(f) is the Kolmogorov–Sinai entropy of f with respect to µ.
The theory also includes a discussion of the existence and uniqueness of
equilibrium and Gibbs measures, among many other properties. We recall
that an f -invariant probability measure µ on X is called an equilibrium
measure for ϕ if

P (ϕ) = hµ(f) +

∫
X
ϕdµ.

It turns out that these measures and particularly whether they possess or
not the so-called Gibbs property, is crucial in the dimension theory and
multifractal analysis of dynamical systems. We refer the reader to the books
[4, 8, 10, 15] for details and further references, although a brief discussion is
given in the following paragraphs.

One of the major applications of the thermodynamic formalism is to the
dimension theory of dynamical systems, and particularly to multifractal
analysis. The main objective of the dimension theory of dynamical systems
is to measure the complexity of an invariant object, such as an invariant set
or an invariant measure, from the dimensional point of view. This includes
using topological entropy, Hausdorff dimension, box dimension and topolog-
ical pressure, among many other characteristics. We refer the reader to the
books [2, 12] for a detailed presentation of substantial parts of the theory.

The reason for this relation between the thermodynamic formalism and
the dimension theory of dynamical systems is that the unique solution s of
the equation

P (sϕ) = 0,

for some appropriate function ϕ, is often related to the Hausdorff dimension
of a given invariant set. This equation was first considered by Bowen in [5]
(see also [9, 16] for other early seminal works on the study of the dimension of
repellers and hyperbolic sets). In particular, if µs is an equilibrium measure
for sϕ, then

P (sϕ) = hµs(f) + s

∫
X
ϕdµs

and so

P (sϕ) = 0 ⇔ s = − hµs(f)∫
X ϕdµs

.

This already motivates the interest in equilibrium measures in the context
of dimension theory. It turns out that virtually all known equations used
to compute or to estimate the dimension of an invariant set are particular
cases of Bowen’s equation or of some appropriate generalization.

A subfield of the dimension theory of dynamical systems is multifractal
analysis, which studies the complexity of the level sets of any invariant
local quantity obtained from a dynamical system. This includes Birkhoff
averages, Lyapunov exponents, pointwise dimensions and local entropies,
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among various others. These functions are typically only measurable and so
again it is appropriate to use quantities such as the topological entropy or
the Hausdorff dimension to measure their complexity.

The nonadditive thermodynamic formalism was introduced in [1] as a
generalization of the classical thermodynamic formalism considered above,
essentially with the topological pressure P (ϕ) of a continuous function ϕ
replaced by the topological pressure P (Φ) of a sequence of continuous func-
tions Φ = (ϕn)n∈N. Indeed, for a certain class of sequences we have

P (Φ) = lim
ε→0

lim sup
n→∞

1

n
log sup

E

∑
x∈E

expϕn(x),

with the supremum taken over all (n, ε)-separated sets E ⊂ X. However,
the former limit may not exist for an arbitrary sequence Φ (we refrain from
discussing the details here). For this reason and since we also need to con-
sider functions on sets that need not be compact nor invariant, for example
in view of the applications to dimension theory and multifractal analysis,
the pressure P (Φ) is introduced in terms of general Carathéodory dimension
characteristics (see [12]).

We note that the nonadditive thermodynamic formalism contains as a par-
ticular case a new formulation of the subadditive thermodynamic formalism
introduced by Falconer in [7]. For additive sequences, it recovers the notion
of topological pressure introduced by Pesin and Pitskel’ in [13] as well as
the notions of lower and upper capacity topological pressures introduced by
Pesin in [11] for an arbitrary set. Thus, the nonadditive thermodynamic
formalism also plays a unifying role, besides allowing to consider general
classes of sequences of functions and arbitrary sets.

The initial motivation to introduce the nonadditive thermodynamic for-
malism was the study of a general class of invariant sets that may lack some
uniformity in their construction, for example because the law that defines
a given set changes with time or because the behavior is not the same in
all directions. Incidentally, these difficulties cause that in some situations,
at least at the present stage of the theory, we are only able to establish di-
mension estimates instead of computing the dimension. Sometimes one can
obtain sharp dimension estimates, which often requires a more elaborate
approach, starting essentially with seminal work of Douady and Oesterlé
in [6], who devised an approach to cover the set in a optimal manner.

Over the last decades, the dimension theory of dynamical systems steadily
developed into an independent and quite active field of research (see for ex-
ample the books [2, 3]). However, while the dimension theory and multifrac-
tal analysis for maps are quite developed, the corresponding theory for flows
has experienced a slower progress. To a large extent this happens because a
corresponding result for flows often requires one of two opposite approaches:
in most situations either the result can be reduced to the case of maps or it
requires substantial changes or even new ideas. Because of this, many parts
of the theory are either only sketched or were not yet developed.

Our main aim is precisely to introduce a version of the nonadditive topo-
logical pressure for flows and to describe some of its main properties, thus
paving the way for a corresponding nonadditive thermodynamic formalism.
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In particular, we establish a variational principle for the nonadditive topo-
logical pressure. We also consider the particular case of subadditive families
of functions for which it is possible to give a simpler characterization of
the pressure. To the possible extent we follow corresponding arguments for
maps, taken essentially from [1, 3, 12, 13], although various proofs require
nontrivial modifications.

2. Nonadditive topological pressures

In this section we introduce the notion of nonadditive topological pressure
for a flow (more precisely, we introduce the nonadditive topological pressure
and the nonadditive lower and upper capacity topological pressures). To the
possible extent we mimic the definition in the case of maps.

Let Φ be a continuous flow on a compact metric space (X, d), that is, a
family of homeomorphisms ϕt : X → X such that ϕ0 = id and ϕt◦ϕs = ϕt+s
for all t, s ∈ R. Given x ∈ X and t, ε > 0, we consider the set

Bt(x, ε) =
{
y ∈ X : d(ϕs(y), ϕs(x)) < ε for s ∈ [0, t]

}
.

Moreover, let a = (at)t>0 be a family of continuous functions at : X → R
with tempered variation, that is, such that

lim
ε→0

lim
t→+∞

γt(a, ε)

t
= 0, (1)

where

γt(a, ε) = sup
{
|at(y)− at(z)| : y, z ∈ Bt(x, ε) for some x ∈ X

}
.

Now we introduce the nonadditive topological pressures. Given ε > 0, we
say that a set Γ ⊂ X × R+

0 covers a subset Z ⊂ X if⋃
(x,t)∈Γ

Bt(x, ε) ⊃ Z (2)

and we write

a(x, t, ε) = sup
{
at(y) : y ∈ Bt(x, ε)

}
for (x, t) ∈ Γ.

For each Z ⊂ X and α ∈ R, let

M(Z, a, α, ε) = lim
T→+∞

inf
Γ

∑
(x,t)∈Γ

exp(a(x, t, ε)− αt), (3)

with the infimum taken over all countable sets Γ ⊂ X× [T,+∞) covering Z,
and let

M(Z, a, α, ε) = lim
T→+∞

inf
Γ

∑
(x,t)∈Γ

exp(a(x, t, ε)− αt) (4)

and
M(Z, a, α, ε) = lim

T→+∞
inf
Γ

∑
(x,t)∈Γ

exp(a(x, t, ε)− αt), (5)

with the infimum taken over all countable sets Γ ⊂ X × {T} covering Z.
When α goes from −∞ to +∞, the quantities in (3), (4) and (5) jump from
+∞ to 0 at unique values and so one can define

P (a|Z , ε) = inf
{
α ∈ R : M(Z, a, α, ε) = 0

}
,

P (a|Z , ε) = inf
{
α ∈ R : M(Z, a, α, ε) = 0

}
,
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P (a|Z , ε) = inf
{
α ∈ R : M(Z, a, α, ε) = 0

}
.

Theorem 1. For any family of continuous functions a with tempered vari-
ation and any set Z ⊂ X, the limits

P (a|Z) = lim
ε→0

P (a|Z , ε), P (a|Z) = lim
ε→0

P (a|Z , ε), P (a|Z) = lim
ε→0

P (a|Z , ε)

exist.

Proof. Take δ ∈ (0, ε) and Γ ⊂ X × R+
0 with Z ⊂

⋃
(x,t)∈ΓBt(x, δ). Since

Bt(x, δ) ⊂ Bt(x, ε), property (2) also holds. Let

γ(ε) = lim
t→+∞

γt(a, ε)

t
. (6)

Given η > 0, z ∈ Bt(x, δ) and y ∈ Bt(x, ε), we have

at(y)− at(z) ≤ |at(y)− at(z)| ≤ γt(a, ε) ≤ t(γ(ε) + η)

for any sufficiently large t. Thus,

at(y) ≤ sup
z∈Bt(x,δ)

[at(z) + t(γ(ε) + η)] ≤ a(x, t, δ) + t(γ(ε) + η)

and
a(x, t, ε) ≤ a(x, t, δ) + t(γ(ε) + η)

for any sufficiently large t. Therefore,

M(Z,α, a, ε) ≤M(Z,α− γ(ε)− η, a, δ)
and so

P (a|Z , ε) ≤ P (a|Z , δ) + γ(ε) + η.

Letting δ → 0 we obtain

P (a|Z , ε)− γ(ε)− η ≤ lim
δ→0

P (a|Z , δ). (7)

By (1) we have γ(ε)→ 0 when ε→ 0, which together with the arbitrariness
of η yields the inequality

lim
ε→0

P (a|Z , ε) ≤ lim
δ→0

P (a|Z , δ).

This shows that P (a|Z) is well defined. The existence of the other two limits
can be established in a similar manner. �

The number P (a|Z) is called the nonadditive topological pressure of the
family a on Z, while P (a|Z) and P (a|Z) are called, respectively, the nonad-
ditive lower and upper capacity topological pressures of a on Z. Clearly,

P (a|Z) ≤ P (a|Z) ≤ P (a|Z)

and if Z1 ⊂ Z2, then

P (a|Z1) ≤ P (a|Z2), P (a|Z1) ≤ P (a|Z2), P (a|Z1) ≤ P (a|Z2).

We will drop the prefix “nonadditive” if there is no danger of confusion.
The classical notion of topological pressure for a flow corresponds to con-

sider a family of functions a = (at)t>0 defined by

at(x) =

∫ t

0
b(ϕs(x)) ds
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for some continuous function b : X → R. Given x, y ∈ Bt(z, ε), we obtain

|at(x)− at(y)| =
∣∣∣∣∫ t

0
b(ϕs(x)) ds−

∫ t

0
b(ϕs(y)) ds

∣∣∣∣
≤
∫ t

0
|b(ϕs(x))− b(ϕs(y))| ds

≤ t sup
{
|b(ϕs(x))− b(ϕs(y))| : s ∈ [0, t]

}
≤ t sup

{
|b(x̄)− b(ȳ)| : d(x̄, ȳ) ≤ ε

}
.

Therefore,
γt(a, ε)

t
≤ sup

{
|b(x̄)− b(ȳ)| : d(x̄, ȳ) ≤ ε

}
and it follows from the uniform continuity of b that property (1) holds.

3. Basic properties of the topological pressures

In this section we describe how the topological pressures P (a|Z), P (a|Z)
and P (a|Z) vary with the family of functions a and with the set Z.

We first describe the dependence of the topological pressures on a. For
each s > 0, let as be the family of functions (at+s)t>0.

Theorem 2. For any family of continuous functions a with tempered vari-
ation and any set Z ⊂ X, if there exists K > 0 such that |at+s − at| < Ks
for all t, s > 0, then

P (as|Z) = P (a|Z), P (as|Z) = P (a|Z), P (as|Z) = P (a|Z)

for every s > 0.

Proof. Given s, t, ε > 0 and x ∈ X, let

r(x, s, ε) = sup
{
r ≥ 0 : B(x, r) ⊂ Bt+s(x, ε)

}
, (8)

where B(x, r) is the open ball of radius r centered at x. Clearly, r(x, s, ε) ∈
[0, ε]. If r(x, s, ε) = 0, then there exists a sequence yn ∈ X converging to x
and a sequence τn ∈ [0, t+ s] such that

d(ϕτn(x), ϕτn(yn)) ≥ ε for all n.

Without loss of generality we may assume that τn converges to some number
τ ∈ [0, t+ s], which gives

0 = lim
n→+∞

d(ϕτn(x), ϕτn(yn)) ≥ ε.

This contradiction implies that r(x, s, ε) > 0. Now we show that

r(s, ε) := inf{r(x, s, ε) : x ∈ X} > 0. (9)

Otherwise it would exist a sequence xn ∈ X with

lim
n→+∞

r(xn, s, ε) = 0. (10)

Since X is compact, we may assume that xn converges to some point x̄ ∈ X.
Take

r̄ = r(x̄, s, ε/2) and xn ∈ B(x̄, r̄/2).
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By (8), we have xn ∈ Bt+s(x̄, ε/2). Moreover, if y ∈ B(xn, r̄/2) ⊂ B(x̄, r̄),
then y ∈ Bt+s(x̄, ε/2) and

d(ϕτ (y), ϕτ (xn)) ≤ d(ϕτ (y), ϕτ (x̄)) + d(ϕτ (x̄), ϕτ (xn)) ≤ ε
for every τ ∈ [0, t+ s], which shows that y ∈ Bt+s(xn, ε). Therefore,

B(xn, r̄/2) ⊂ Bt+s(xn, ε)
and so r(xn, s, ε) ≥ r̄/2 for xn ∈ B(x̄, r̄/2), which contradicts to (10). This
establishes property (9).

Observe that since Bt(x, r(s, ε)) ⊂ B(x, r(s, ε)) and r(s, ε) ≤ r(x, s, ε),
by (8) we have

Bt(x, r(s, ε)) ⊂ Bt+s(x, ε).
Hence, for each x ∈ X we obtain

sup
{
|at+s(y)− at+s(z)| : y, z ∈ Bt+s(x, ε)

}
≤ γt+s(a, ε)

and so

sup
{
|ast (y)− ast (z)| : y, z ∈ Bt(x, r(s, ε))

}
≤ γt+s(a, ε).

Therefore,

γt(a
s, r(s, ε)) ≤ γt+s(a, ε).

Since

γt(a
s, ε) ≤ γt(as, ε′) for ε ≤ ε′,

we obtain

lim
ε→0

lim
t→+∞

γt(a
s, ε)

t
= inf

ε≤r(s,ε)
lim

t→+∞

γt(a
s, ε)

t
≤ lim

t→+∞

γt(a
s, r(s, ε))

t

≤ lim
t→+∞

γt+s(a, ε)

t
= lim

t→+∞

γt(a, ε)

t

and so the family as satisfies property (1). On the other hand, we have

e−Ks ≤
∑

(x,t)∈Γ exp(supBt(x,ε) at+s − αt)∑
(x,t)∈Γ exp(a(x, t, ε)− αt)

≤ eKs

for any countable set Γ ⊂ X×R+
0 covering Z and so it follows from (3) that

M(Z,α, a, ε)e−Ks ≤M(Z,α, as, ε) ≤M(Z,α, a, ε)eKs.

Hence, P (as|Z , ε) = P (a|Z , ε) for every ε > 0, which implies that P (as|Z) =
P (a|Z). The remaining identities can be obtained in a similar manner. �

In order to describe the continuity of the topological pressures on a, let

‖a‖ = lim
t→+∞

1

t
sup{|at(x)| : x ∈ X}.

Theorem 3. For any families of continuous functions a and b with tempered
variation and any set Z ⊂ X, when the topological pressures are finite we
have

|P (a|Z)− P (b|Z)| ≤ ‖a− b‖,
|P (a|Z)− P (b|Z)| ≤ ‖a− b‖,
|P (a|Z)− P (b|Z)| ≤ ‖a− b‖.
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Proof. Given η > 0, we have

|at(x)− bt(x)| ≤ t(‖a− b‖+ η)

for any sufficiently large t. Hence, it follows from the definitions that

M(Z, b, α+ ‖a− b‖+ η, ε) ≤M(Z, a, α, ε) ≤M(Z, b, α− ‖a− b‖ − η, ε)

and so

P (b|Z , ε)− ‖a− b‖ − η ≤ P (a|Z , ε) ≤ P (b|Z , ε) + ‖a− b‖+ η.

Since η is arbitrary, we obtain

|P (a|Z , ε)− P (b|Z , ε)| ≤ ‖a− b‖,

which yields the first inequality in the theorem. The remaining inequalities
can be established in a similar manner. �

Now we describe the dependence of the topological pressures on the set Z.

Theorem 4. Given a family of continuous functions a with tempered vari-
ation and a set Z ⊂ X, for any finite or countable union Z =

⋃
i∈I Zi the

following properties hold:

1. P (a|Z) = supi∈I P (a|Zi);
2. P (a|Z) ≥ supi∈I P (a|Zi), with equality when I is finite.
3. P (a|Z) ≥ supi∈I P (a|Zi), with equality when I is finite and P (a|Zi) =

P (a|Zi) for each i ∈ I;

Proof. 1. Since Zi ⊂ Z, we have P (a|Zi) ≤ P (a|Z) for each i and so

sup
i∈I

P (a|Zi) ≤ P (a|Z). (11)

Now take α > supi∈I P (a|Zi , ε). Then M(Zi, a, α, ε) = 0 for each i. Hence,
given δ > 0 and T > 0, for each i there exists Γi ⊂ X × [T,+∞) covering Zi
such that ∑

(x,t)∈Γi

exp(a(x, t, ε)− αt) < δ

2i
.

Then Γ =
⋃
i∈I Γi covers Z and∑

(x,t)∈Γ

exp(a(x, t, ε)− αt) ≤
∑
i∈I

∑
(x,t)∈Γi

exp(a(x, t, ε)− αt) ≤
∑
i∈I

δ

2i
≤ δ.

Letting T → +∞ gives M(Z, a, α, ε) ≤ δ and so M(Z, a, α, ε) = 0 since δ is
arbitrary. Therefore, α ≥ P (a|Z , ε) and letting α→ supi∈I P (a|Zi , ε) gives

sup
i∈I

P (a|Zi , ε) ≥ P (a|Z , ε). (12)

On the other hand, it follows from (7) with γ(ε) as in (6) that

P (a|Zi) ≥ P (a|Zi , ε)− γ(ε).

Hence, by (11) and (12) we obtain

P (a|Z) ≥ sup
i∈I

P (a|Zi) ≥ sup
i∈I

P (a|Zi , ε)− γ(ε) ≥ P (a|Z , ε)− γ(ε)

and the desired result follows from the fact that γ(ε)→ 0 when ε→ 0.
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2. Since Zi ⊂ Z, we have P (a|Zi) ≤ P (a|Z) for each i and so

sup
i∈I

P (a|Zi) ≤ P (a|Z).

Now assume that I is finite. We need to show that

max
i∈I

P (a|Zi) ≥ P (a|Z). (13)

For each i consider a set Γi ⊂ X×{T} covering Zi. Then Γ =
⋃
i∈I Γi covers

the union Z and∑
(x,t)∈Γ

exp(a(x, t, ε)− αt) ≤
∑
i∈I

∑
(x,t)∈Γi

exp(a(x, t, ε)− αt),

which implies that

M(Z, a, α, ε) ≤
∑
i∈I

M(Zi, a, α, ε) ≤ card I max
i∈I

M(Zi, a, α, ε).

Therefore,

P (a|Z , ε) ≤ max
i∈I

P (a|Zi , ε)

and taking the limit when ε→ 0 yields inequality (13).
3. Since Zi ⊂ Z, we have P (a|Zi) ≤ P (a|Z) for each i and so

sup
i∈I

P (a|Zi) ≤ P (a|Z).

When I is finite, by the former property we have maxi∈I P (a|Zi) = P (a|Z).
Since P (a|Zi) = P (a|Zi) for each i, we obtain

P (a|Z) ≥ max
i∈I

P (a|Zi) = max
i∈I

P (a|Zi) = P (a|Z) ≥ P (a|Z),

which shows that P (a|Z) = maxi∈I P (a|Zi) as desired. �

4. Characterizations of the capacity topological pressures

In this section we establish several alternative formulas for the lower and
upper capacity topological pressures. In particular, we obtain formulas in
terms of partition functions and separated sets.

4.1. General case. We first describe a characterization in terms of parti-
tion functions. Given ε, t > 0 and Z ⊂ X, consider the partition function

Zt(Z, a, ε) = inf
Γ

∑
(x,t)∈Γ

exp a(x, t, ε),

with the infimum taken over all countable sets Γ ⊂ X × {t} covering Z.

Theorem 5. Given a family of continuous functions a with tempered vari-
ation and a set Z ⊂ X, for each ε > 0 we have

P (a|Z , ε) = lim
t→+∞

1

t
logZt(Z, a, ε) (14)

and

P (a|Z , ε) = lim
t→+∞

1

t
logZt(Z, a, ε). (15)
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Proof. Note that

M(Z, a, α, ε) = lim
t→+∞

(
e−αtZt(Z, a, ε)

)
and

M(Z, a, α, ε) = lim
t→+∞

(
e−αtZt(Z, a, ε)

)
.

Given α > P (a|Z , ε), there exists a sequence tn ↗ +∞ such that

e−αtnZtn(Z, a, ε) < 1 for n ∈ N.

Therefore, logZtn(Z, a, ε) < αtn and so

lim
t→+∞

1

t
logZt(Z, a, ε) ≤ P (a|Z , ε). (16)

On the other hand, for each α < P (a|Z , ε) we have e−αtZt(Z, a, ε) > 1 for
any sufficiently large t and so

lim
t→+∞

1

t
logZt(Z, a, ε) ≥ α.

Therefore,

lim
t→+∞

1

t
logZt(Z, a, ε) ≥ P (a|Z , ε),

which together with (16) establishes property (14). The second property
can be obtained in a similar manner. �

Now we establish additional formulas for the lower and upper capacity
topological pressures in terms of separated sets and in terms of certain cov-
ers. For each t > 0 consider the distance dt on X defined by

dt(x, y) = max
{
d(ϕτ (x), ϕτ (y)) : τ ∈ [0, t]

}
.

Given ε > 0, a set E ⊂ X is said to be (t, ε)-separated if dt(x, y) > ε for any
x, y ∈ E with x 6= y. Given Z ⊂ X and ε > 0, for each t > 0 let

Rt(Z, a, ε) = sup
E

∑
x∈E∩Z

exp at(x),

with the supremum taken over all (t, ε)-separated sets E ⊂ X. Moreover, let

St(Z, a, ε) = inf
V

∑
V ∈V

exp sup
V
at,

with the infimum taken over all finite open covers V of Z by sets V with

sup
{
dt(x, y) : x, y ∈ V

}
< ε. (17)

Theorem 6. For any family of continuous functions a with tempered vari-
ation and any set Z ⊂ X, we have

P (a|Z) = lim
ε→0

lim
t→+∞

1

t
logRt(Z, a, ε) = lim

ε→0
lim

t→+∞

1

t
log St(Z, a, ε) (18)

and

P (a|Z) = lim
ε→0

lim
t→+∞

1

t
logRt(Z, a, ε) = lim

ε→0
lim

t→+∞

1

t
log St(Z, a, ε). (19)
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Proof. We first show that

Rt(Z, a, 2ε) ≤ Zt(Z, a, ε) ≤ Rt(Z, a, ε)e
γt(a,ε). (20)

Note that distinct elements of Z in a (t, 2ε)-separated set E belong to distinct
elements of any given open cover {Bt(x, ε) : (x, t) ∈ Γ} of Z. Hence, for each
x ∈ E ∩Z we have at(x) ≤ a(yx, t, ε) for some (yx, t) ∈ Γ with x ∈ Bt(yx, ε).
Therefore,∑

x∈E∩Z
exp at(x) ≤

∑
x∈E∩Z

exp a(yx, t, ε) ≤
∑

(y,t)∈Γ

exp a(y, t, ε).

This establishes the first inequality in (20). Now let E be a (t, ε)-separated
set such that for each z ∈ Z the union E ∪ {z} is not a (t, ε)-separated set.
Then E × {t} covers Z. Therefore,

inf
Γ

∑
(x,t)∈Γ

exp inf
y∈Bt(x,ε)

at(y) ≤
∑

(x,t)∈(E∩Z)×{t}

exp inf
y∈Bt(x,ε)

at(y)

≤
∑

x∈E∩Z
exp at(x) ≤ Rt(Z, a, ε),

(21)

with the first infimum taken over all Γ ⊂ X × {t} covering Z. If y, z ∈
Bt(x, ε), then at(y) ≥ at(z)− γt(a, ε) and so

inf
y∈Bt(x,ε)

at(y) ≥ sup
z∈Bt(x,ε)

at(z)− γt(a, ε).

Hence, it follows from (21) that the second inequality in (20) also holds.
Now we show that

St(Z, a, 2ε) ≤ Zt(Z, a, ε) ≤ St(Z, a, ε). (22)

The first inequality follows from the fact that Bt(x, ε) has dt-diameter less
than 2ε. For the second inequality, we observe that if V is a finite open cover
of Z by sets V satisfying (17), then Z ⊂

⋃
V ∈VBt(xV , ε) for every xV ∈ V

since V ⊂ Bt(xV , ε). Therefore,∑
V ∈V

exp a(x, t, ε) ≥ Zt(Z, a, ε),

which yields the second inequality in (22).
By (20) and (22) we have

Zt(Z, a, ε) ≤ St(Z, a, ε) ≤ Zt

(
Z, a,

ε

2

)
≤ Rt

(
Z, a,

ε

2

)
eγt(a,ε/2) ≤ Zt

(
Z, a,

ε

4

)
eγt(a,ε/2).

The formulas in (18) and (19) follow readily from these inequalities together
with (14) and (15). �

4.2. Subadditive case. In this section we consider the particular case of
subadditive families of functions and we describe additional characteriza-
tions of the nonadditive topological pressures in this case. A family of func-
tions a = (at)t>0 is said to be subadditive if

as+t(x) ≤ as(x) + at(ϕs(x))
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for all s, t > 0 and x ∈ X. Recall that a set A ⊂ X is said to be Φ-invariant
if ϕt(A) = A for all t ∈ R.

Theorem 7. For any subadditive family of continuous functions a with
tempered variation and any Φ-invariant set Z ⊂ X, we have

P̂ (a|Z) := P (a|Z) = P (a|Z) = lim
ε→0

lim
t→+∞

1

t
log St(Z, a, ε). (23)

If, in addition, Z is compact, then P (a|Z) = P̂ (a|Z).

Proof. We first show that the limit on the right-hand side of (23) exists. We
shall always assume in what follows that Z is Φ-invariant.

Lemma 8. For each i ∈ N let Vi be a cover of Z by sets of dti-diameter
less than ε. Then

Vn =

{
n⋂
i=1

ϕ−τiVi : Vi ∈ Vi

}
(24)

is a cover of Z by sets of dτn+1-diameter less than ε, where τn =
∑n−1

j=0 tj
taking t0 = 0. Moreover,

sup

{
aτn+1(x) : x ∈

n⋂
i=1

ϕ−τiVi

}
≤

n∑
i=1

sup
x∈Vi

ati(x). (25)

Proof of the lemma. Since Z is Φ-invariant, the family Vn is a cover. Now
we proceed by induction on n. For n = 1 the statement is clear. For n > 1
take τ ∈ [0, τn+1] and

x, y ∈ V =

n⋂
i=1

ϕ−τiVi.

If V ′ =
⋂n−1
i=1 ϕ−τiVi has dτn-diameter less than ε, then

d(ϕτ (x), ϕτ (y)) < ε for τ ∈ [0, τn]

since V ⊂ V ′. Moreover, x, y ∈ ϕ−τnVn and so ϕτn(x), ϕτn(y) ∈ Vn and

d(ϕτ (ϕτn(x)), ϕτ (ϕτn−1(y))) < ε

for τ ∈ [0, tn]. This shows that

d(ϕτ (x), ϕτ (y)) < ε for τ ∈ [τn, τn+1].

Therefore, the set V has dτn+1-diameter less than ε. Moreover, since a is
subadditive, for each x ∈ V we obtain

aτn+1(x) ≤ aτn(x) + atn(ϕτn(x)) ≤
n−1∑
i=1

sup
x∈Vi

ati(x) + sup
x∈Vn

atn(x)

because V ⊂ ϕ−τnVn and so ϕτn(x) ∈ Vn. �

One can now establish the existence of the limit in (23). By Lemma 8,
if V1 is a cover of Z by sets of ds-diameter less than ε and V2 is a cover
of Z by sets of dt-diameter less than ε, then V2 is a cover of Z by sets of
ds+t-diameter less than ε and

sup
x∈V1∩ϕ−sV2

as+t(x) ≤ sup
x∈V1

as(x) + sup
x∈V2

at(x).
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Therefore,

St+s(Z, a, ε) ≤
∑
V1∈V1

exp sup
x∈V1

at(x)×
∑
V2∈V2

exp sup
x∈V2

as(x)

and so

log St+s(Z, a, ε) ≤ log St(Z, a, ε) + log Ss(Z, a, ε).

This readily implies that the limit

lim
t→+∞

1

t
log St(Z, a, ε)

exists. Together with Theorem 6 this yields property (23).
Now assume that Z is compact. To establish the last property, take ε > 0

and α > P (a|Z , ε/2). There exist s > 0 and a countable set Γ ⊂ X×[s,+∞)
covering Z such that

N(V) :=
∑
V ∈V

exp

(
sup
z∈V

at(z)− αt
)
< 1,

where

V =
{
Bt(x, ε/2) : (x, t) ∈ Γ

}
.

Note that the sets Bt(x, ε/2) have dt-diameter less than ε. Since Z is com-
pact, we may assume that V and so also Γ are finite. Let T = max(x,t)∈Γ t.
By Lemma 8, the family Vn in (24) covers Z and (25) holds. Therefore,

N(Vn) ≤
n∏
i=1

∑
V ∈V

exp

(
sup
x∈V

at(V )(x)− αt(V )

)
= N(V)n, (26)

where t(V ) = t for V = Bt(x, ε/2). Now we consider the cover

V∞ =
{
V : V ∈ Vn for some n ∈ N

}
.

By (26) we have

N(V∞) ≤
+∞∑
n=1

N(Vn) ≤
+∞∑
n=1

N(V)n < +∞.

Given S ≥ 2T , let ΛS ⊂ V∞ be the family of all sets U =
⋂k
i=1 ϕ−τiVi

such that Vi = Bti(xi, ε/2) ∈ V for i = 1, . . . , k and

τk < S − T ≤ τk+1.

Note that ΛS covers Z. Indeed, given z ∈ Z, there exists

V k =
k⋂
i=1

ϕ−τiVi ∈ V∞

containing z with τk+1 > S. But the point z is also in V i for i < k such that
τi < S−T ≤ τi+1 and any such a V i belongs to ΛS . Now write t(U) = τi+1.
Clearly,

S − T ≤ t(U) < S for U ∈ ΛS .

Finally, we consider the cover of Z defined by

Λ′S =
{
U ∩ ϕ−t(U)BS−t(U)(x, ε/2) : U ∈ ΛS , (x, T ) ∈ Γ′

}
,
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where Γ′ ⊂ X × {T} is some finite set covering Z. Note that any V ∈ Λ′S
has dS-diameter less than ε and t(V ) = S. By Lemma 8 we obtain

N(Λ′S) =
∑

U∈ΛS ,(x,T )∈Γ′

exp

(
sup

z∈U∩ϕ−t(U)BS−t(U)(x,ε/2)
aS(z)− αS

)

≤
∑
U∈ΛS

exp

(
sup
z∈U

at(U)(z)− αt(U)

)
×

∑
(x,T )∈Γ′

exp
(
a(x, S − t(U), ε/2)− α(S − t(U))

)
≤ N(V∞) max{1, e−αT }

∑
(x,T )∈Γ′

exp(a(x, T, ε/2)− αT ) < +∞.

Letting S → +∞ gives M(Z, a, α, ε/2) = 0 and so α ≥ P (a|Z , ε/2). There-
fore, letting α→ P (a|Z , ε/2) we obtain

P (a|Z , ε/2) ≥ P (a|Z , ε/2),

which yields the desired property. �

5. Variational principle

In this section we establish a nonadditive version of the variational prin-
ciple for the topological pressure for flows. To the possible extent we follow
the approach in [1] in the case of maps (see [3] for additional details).

We continue to assume that Φ is a continuous flow on a compact metric
space X. Let M be the set of Φ-invariant probability measures on X, that is,
the probability measures µ on X such that

µ(ϕt(A)) = µ(A)

for any Borel set A ⊂ X and any t ∈ R. A measure µ ∈ M is said to be
ergodic for the flow Φ if every Borel Φ-invariant set A ⊂ X satisfies µ(A) = 0
or µ(X \A) = 0. We note that in general an invariant measure for the time-1
map ϕ1 need not be invariant for the flow and that an ergodic measure for
the flow need not be ergodic for the time-1 map. Given a Borel Φ-invariant
set Z ⊂ X, let MZ be the set of measures µ ∈ M concentrated on Z, that
is, such that µ(Z) = 1.

Given x ∈ X and t > 0, we define a probability measure on X by

µx,t =
1

t

∫ t

0
δϕs(x) ds,

where δy is the probability measure concentrated on {y}. Let V (x) be the
set of weak sublimits of the family {µx,t}t>0. Then ∅ 6= V (x) ⊂ M. For
each µ ∈M we consider the Borel Φ-invariant sets

L(Z) =
{
x ∈ Z : V (x) ∩MZ 6= ∅

}
and Zµ =

{
x ∈ Z : V (x) = {µ}

}
.

The following result establishes a variational principle for the nonadditive
topological pressure. For each µ ∈ M, let hµ(Φ) be the Kolmogorov–Sinai
entropy of Φ with respect to µ.
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Theorem 9. Let a be a family of continuous functions with tempered varia-
tion such that supt∈[0,T ] ‖at‖∞ < +∞ for all T > 0 and let Z ⊂ X be a Borel
Φ-invariant set. If there exists a continuous function b : X → R such that

at+s − at ◦ ϕs →
∫ s

0
(b ◦ ϕu) du (27)

uniformly on Z when t→ +∞ for some s > 0, then

P (a|L(Z)) = sup

{
hµ(Φ) +

∫
Z
b dµ : µ ∈MZ

}
.

Proof. We divide the proof into various steps.

Step 1. An auxiliary lemma. Take x ∈ L(Z) and µ ∈ V (x) ∩MZ . Given
δ > 0, there exists an increasing sequence (tj)j∈N in R+ such that∣∣∣∣ 1

tj

∫ tj

0
b(ϕs(x)) ds−

∫
Z
b dµ

∣∣∣∣ < δ

for all j ∈ N. This implies that∣∣∣∣atj (x)

tj
−
∫
Z
b dµ

∣∣∣∣ ≤ ∣∣∣∣atj (x)

tj
− 1

tj

∫ tj

0
b(ϕu(x)) du

∣∣∣∣+ δ. (28)

Moreover, let

bt = at+s − at ◦ ϕs −
∫ s

0
(b ◦ ϕu) du.

For each n ∈ N with t− ns ≥ 0 we have

at −
∫ t

0
(b ◦ ϕu) du = at − at−s ◦ ϕs −

∫ s

0
(b ◦ ϕu) du

+ at−s ◦ ϕs −
∫ t

s
(b ◦ ϕu) du

= bt−s +

[
at−s −

∫ t−s

0
(b ◦ ϕu) du

]
◦ ϕs

= bt−s + bt−2s ◦ ϕs +

[
at−2s −

∫ t−2s

0
(b ◦ ϕu) du

]
◦ ϕ2s

and so, proceeding inductively,

at −
∫ t

0
(b ◦ ϕu) du =

n∑
k=1

bt−ks ◦ ϕ(k−1)s

+ at−ns ◦ ϕns −
∫ t−ns

0
(b ◦ ϕu+ns) du.

(29)

Hence, it follows from (28) that∣∣∣∣atj (x)

tj
−
∫
Z
b dµ

∣∣∣∣ ≤ ∣∣∣∣atj (x)

tj
− 1

tj

∫ tj

0
b(ϕu(x)) du

∣∣∣∣+ δ

≤ 1

tj

n∑
k=1

‖btj−ks‖∞ +
‖atj−ns‖∞ + (tj − ns)‖b‖∞

tj
+ δ.
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Now let nj = btj/sc. Then tj − njs ≤ s and since supt∈[0,s] ‖at‖∞ < +∞,
we have

‖atj−njs‖∞ + (tj − njs)‖b‖∞
tj

< δ

for any sufficiently large j. Hence, by (27) and since supt∈[0,T ] ‖at‖∞ < +∞
for all T > 0, taking n = nj we obtain∣∣∣∣atj (x)

tj
−
∫
Z
b dµ

∣∣∣∣ ≤ 1

tj

nj∑
k=1

‖btj−ks‖∞ + 2δ ≤ 3δ,

again for any sufficiently large j.
Now let E be a finite set. Given k ∈ N and c = (c1, . . . , ck) ∈ Ek, we

define a probability measure µc on E by

µc(e) =
1

k
card{j : cj = e} for e ∈ E.

Moreover, let

H(c) = −
∑
e∈E

µc(e) logµc(e),

with the convention that 0 log 0 = 0. Using the former observations and
proceeding as in the proof of [3, Lemma 4.3.2] now for the map ϕ1, we
obtain the following result (recall that hµ(Φ) = hµ(ϕ1)).

Lemma 10. Let Γ ⊂ X × {1} be a finite cover of X. For the open cover
V = {V1, . . . , Vr} of X, where Vj = B1(xj , ε/2) with (xj , 1) ∈ Γ, there exist
m, p ∈ N, with p arbitrary large, and a sequence U = Vi1 · · ·Vip such that:

1. x ∈
⋂p
r=1 ϕ−r+1Vir and

ap(x) ≤ p
(∫

Z
b dµ+ 3δ

)
;

2. there exists a subset V ∈ (Vm)k of U of length km ≥ p−m such that
H(V ) ≤ m(hµ(Φ) + δ).

Step 2. Upper bound for the topological pressure. Here we use Lemma 10 to
obtain an upper bound for the topological pressure.

Given m ∈ N and u ∈ R, let Zm,u be the set of points x ∈ L(Z) such that
the two properties in Lemma 10 hold for some measure µ ∈ V (x)∩MZ with∫

Z
b dµ ∈ [u− δ, u+ δ].

Moreover, let np be the number of all sequences U ∈ Vp satisfying the same
two properties for some x ∈ Zm,u. Proceeding as in [3, Lemma 4.3.3] one
can show that

np ≤ exp[p(hµ(Φ|Z) + 2δ)] = exp[p(hµ(Φ) + 2δ)]

for any sufficiently large p (since µ(Z) = 1).
We proceed with the proof of the theorem. For each τ ∈ N, the collection

of all sequences U ∈ Vp satisfying the two properties in Lemma 10 for some
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x ∈ Zm,u and p ≥ τ cover the set Zm,u. Therefore,

M(Zm,u, a, α, ε)

≤ lim
τ→+∞

+∞∑
p=τ

np exp

[
−αp+ p

(∫
Z
b dµ+ 3δ

)
+ γp(a, ε)

]

≤ lim
τ→+∞

+∞∑
p=τ

exp

[
p

(
hµ(Φ) +

∫
Z
b dµ+ 5δ − α+ lim

t→+∞

γt(a, ε)

t

)]

≤ lim
τ→+∞

+∞∑
p=τ

βp,

(30)

where

β = exp

(
−α+ c+ 5δ + lim

t→+∞

γt(a, ε)

t

)
and

c = sup

{
hµ(Φ) +

∫
Z
b dµ : µ ∈MZ

}
.

For

α > c+ 5δ + lim
t→+∞

γt(a, ε)

t
(31)

we have β < 1 and so it follows from (30) that

M(Zm,u, a, α, ε) ≤ lim
τ→+∞

+∞∑
p=τ

βp = 0 and α > P (a|Zm,u , ε). (32)

Now take points u1, . . . , ur such that for each u ∈ [min b,max b] there
exists j ∈ {1, . . . , r} with |u− uj | < δ. Then

L(Z) =
⋃
m∈N

r⋃
i=1

Zm,ui

and so it follows from (31) and (32) together with the first property in
Theorem 4 that

c+ 5δ + lim
ε→0

lim
t→+∞

γt(a, ε)

t
≥ lim

ε→0
sup
m,i

P (a|Zm,ui , ε)

= lim
ε→0

P (a|L(Z), ε) = P (a|L(Z)).

Since δ is arbitrary and a has tempered variation, we find that P (a|L(Z)) ≤ c.

Step 3. Lower bound for the topological pressure. In the remainder of the
proof of the theorem we show that P (a|L(Z)) ≥ c. First we establish an
auxiliary result.

Lemma 11. For each measure µ ∈MZ there exists a Φ-invariant function
b̄ ∈ L1(X,µ) such that

lim
t→+∞

at
t

= lim
t→+∞

1

t

∫ t

0
(b ◦ ϕu) du = b̄

µ-almost everywhere and in L1(X,µ).
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Proof of the lemma. It follows from (29) that∣∣∣∣at(x)

t
− 1

t

∫ t

0
b(ϕu(x)) du

∣∣∣∣ ≤ 1

t

n∑
k=1

‖bt−ks‖∞ +
‖at−ns‖∞ + (t− ns)‖b‖∞

t
.

Let n = bt/sc. Then t− ns ≤ s and since supt∈[0,s] ‖at‖∞ < +∞, we have

sup
t≥0

(
‖at−ns‖∞ + (t− ns)‖b‖∞

)
< +∞.

Since supt∈[0,T ] ‖at‖∞ < +∞ for all T > 0, it follows from (27) that

1

t

(
at −

∫ t

0
(b ◦ ϕu) du

)
→ 0

uniformly on Z when t → +∞. On the other hand, since b ∈ L1(X,µ),
by Birkhoff’s Ergodic theorem for flows there exists a Φ-invariant function
b̄ ∈ L1(X,µ) such that

lim
t→+∞

1

t

∫ t

0
(b ◦ ϕu) du = b̄

µ-almost everywhere and in L1(X,µ). This yields the desired statement. �

Now we obtain a lower bound for the topological pressure.

Lemma 12. For each ergodic measure µ ∈MZ , we have

P (a|Z) ≥ hµ(Φ) +

∫
Z
b dµ.

Proof of the lemma. Given ε > 0, there exist δ ∈ (0, ε), a measurable par-
tition ξ = {C1, . . . , Cm} of X and an open cover V = {V1, . . . , Vk} of X for
some k ≥ m such that:

1. diamCj ≤ ε, Vi ⊂ Ci and µ(Ci \ Vi) < δ2 for i = 1, . . . ,m;

2. the set E =
⋃k
i=m+1 Vi has measure µ(E) < δ2.

Now we consider a measure ν in the ergodic decomposition of µ with respect
to the time-1 map ϕ1. The latter is described by a measure τ in the space
M′ of ϕ1-invariant probability measures that is concentrated on the ergodic
measures (with respect to ϕ1). Note that ν(E) < δ for ν in a set Mδ ⊂ M′

of positive τ -measure such that τ(Mδ)→ 1 when δ → 0 since

δ2 > µ(E) =

∫
M′
ν(E) dτ(ν) ≥

∫
M′\Mδ

ν(E) dτ(ν) ≥ δτ(M′ \Mδ).

For each x ∈ Z and n ∈ N, let tn(x) be the number of integers l ∈ [0, n)
such that ϕl1(x) ∈ E. By Birkhoff’s ergodic theorem, since ν is ergodic
for ϕ1 we have

lim
n→+∞

tn(x)

n
= lim

n→+∞

1

n

n−1∑
j=0

χE(ϕj1(x)) =

∫
X
χE dν = ν(E) (33)

for ν-almost every x ∈ X. On the other hand, by Lemma 11 and Birkhoff’s
ergodic theorem we have

lim
t→+∞

at(x)

t
= lim

t→+∞

1

t

∫ t

0
(b ◦ ϕu)(x) du =

∫
Z
b dµ. (34)
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for µ-almost every x ∈ X. By (33), (34) and Egorov’s theorem, there exist
ν ∈Mδ, n1 ∈ N and a measurable set A1 ⊂ Z with ν(A1) ≥ 1− δ such that

tn(x)

n
< 2δ and

∣∣∣∣an(x)

n
−
∫
Z
b dµ

∣∣∣∣ < δ (35)

for every x ∈ A1 and n > n1 (note that (34) holds for ν-almost every
x ∈ X, for τ -almost every ν, because it holds for µ-almost every x ∈ X).
Moreover, let

ξn =
n∨
j=0

ϕ−j1 (ξ|Z),

where ξ|Z is the partition induced by ξ on Z. It follows from the Shannon–
McMillan–Breiman theorem and Egorov’s theorem that there exist n2 ∈ N
and a measurable set A2 ⊂ Z with ν(A2) ≥ 1− δ such that

ν(ξn(x)) ≤ exp
[
(−hν(ϕ1, ξ) + δ)n

]
(36)

for every x ∈ A2 and n > n2. Take

p = max{n1, n2} and A = A1 ∩A2.

Note that ν(A) ≥ 1− 2δ. By construction, properties (35) and (36) hold for
every x ∈ A and n > p.

Now let ∆ be a Lebesgue number of the cover V and take ε > 0 such that
2ε < ∆. Given α ∈ R, take q ≥ p such that for each n ≥ q there exists a set
Γ ⊂ X × [n,+∞) covering Z with∣∣∣∣∣∣

∑
(x,t)∈Γ

exp(a(x, t, ε)− αt)−M(Z, a, α, ε)

∣∣∣∣∣∣ < δ. (37)

Given l ∈ N, let

Γl =
{

(x, l) ∈ Γ : Bl(x, ε) ∩A 6= ∅
}

and define Bl =
⋃

(x,t)∈Γl
Bt(x, ε). One can now proceed as in the proof of

[13, Lemma 2] to show that

card Γl ≥ ν(Bl ∩A) exp
[
hν(ϕ1, ξ)l − (1 + 2 log card ξ)lδ

]
(38)

for each l ∈ N. Indeed, let Ll be the number of elements C of the partition ξl
such that C ∩Bl ∩A 6= ∅. It follows from (36) that

ν(Bl ∩A) ≤
∑

C∩Bl∩A 6=∅

ν(C) ≤ Ll exp
[
(−hν(ϕ1, ξ) + δ)l

]
. (39)

Note that by eventually making ε sufficiently small, for each x ∈ Z there
exist i1, . . . , il ∈ {1, . . . , k} such that Bl(x, ε) ⊂ V , where

V =

l⋂
j=1

ϕ−l+1
1 Vij

(this follows readily from the uniform continuity of the map (t, x) 7→ ϕt(x) on
the compact set [0, 1]×X). Given (x, l) ∈ Γl, we have Bl(x, ε)∩A1 6= ∅ and
so also V ∩A1 6= ∅. Hence, it follows from the first inequality in (35) that the
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number S(x,l) of elements C of the partition ξl such that C∩Bl(x, ε)∩A 6= ∅
satisfies

S(x,l) ≤ m2δl = exp(2δl logm).

Therefore,

Ll ≤
∑

(x,l)∈Γl

S(x,l) ≤ card Γl exp(2δl logm). (40)

Inequality (38) follows now readily from (39) and (40).
Observe that by the second inequality in (35) we have

sup
Bl(x,ε)

al ≥ l
(∫

Z
b dµ− δ

)
− γl(a, ε)

for all l ≥ q and (x, t) ∈ Γl. Therefore,∑
(x,t)∈Γ

exp(a(x, t, ε)− αt)

≥
+∞∑
l=q

∑
(x,t)∈Γl

exp

(
sup
Bl(x,ε)

al − αl
)

≥
+∞∑
l=q

card Γl exp

[(
−α+

∫
Z
b dµ− δ

)
l − γl(a, ε)

]

≥
+∞∑
l=q

ν(Bl ∩A)

× exp

[(
hν(ϕ1, ξ) +

∫
Z
b dµ− γl(a, ε)

l
− α

)
l − 2(1 + log card ξ)lδ

]
.

Without loss of generality one can assume that q is sufficiently large so that

γl(a, ε)

l
≤ lim

t→+∞

γt(a, ε)

t
+ δ

for all l ≥ q. Now take

α < hν(ϕ1, ξ) +

∫
Z
b dµ− lim

t→+∞

γt(a, ε)

t
.

Without loss of generality one can also assume that δ is so small such that

α < hν(ϕ1, ξ) +

∫
Z
b dµ− lim

t→+∞

γt(a, ε)

t
− 2(1 + log card ξ)δ − δ.

Then ∑
(x,t)∈Γ

exp(a(x, t, ε)− αt) ≥
+∞∑
l=q

ν(Bl ∩A) ≥ ν(A) ≥ 1− 2δ

and so it follows from (37) that

M(Z, a, α, ε) > 1− 3δ > 0.

Therefore, P (a|Z , ε) ≥ α, which implies that

P (a|Z , ε) ≥ hν(ϕ1, ξ) +

∫
Z
b dµ− lim

t→+∞

γt(a, ε)

t
.
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Finally, we consider measurable partitions ξl and open covers Vl as before
with ε = 1/l. For each l take εl > 0 such that 2εl < 1/l is a Lebesgue
number of the cover Vl. Since diam ξl → 0 when l→ +∞, it follows that

lim
l→+∞

hν(ϕ1, ξl) = hν(ϕ1).

Moreover, since the family a has tempered variation property, we obtain

P (a|Z) = lim
l→+∞

P (a|Z , εl)

≥ lim
l→+∞

hν(ϕ1, ξl) +

∫
Z
b dµ− lim

l→+∞
lim

t→+∞

γt(a, εl)

t

= hν(ϕ1) +

∫
Z
b dµ.

Integrating with respect to ν gives

P (a|Z) ≥
∫
Mδ

hν(ϕ1) dτ(ν) +

∫
Z
b dµ

and letting δ → 0 yields the inequality

P (a|Z) ≥
∫
M′
hν(ϕ1) dτ(ν) +

∫
Z
b dµ

= hµ(ϕ1) +

∫
Z
b dµ = hµ(Φ) +

∫
Z
b dµ.

This completes the proof of the lemma. �

When µ ∈ MZ is ergodic, Zµ is a nonempty Φ-invariant subset of L(Z)
with µ(Zµ) = 1. Hence, it follows from Lemma 12 that

P (a|L(Z)) ≥ P (a|Zµ) ≥ hµ(Φ) +

∫
Zµ

b dµ = hµ(Φ) +

∫
Z
b dµ.

When µ ∈MZ is arbitrary, one can decompose X into ergodic components
and the previous argument shows that

P (a|L(Z)) ≥ sup
µ∈MZ

(
hµ(Φ) +

∫
Z
b dµ

)
.

This completes the proof of the theorem. �

It follows from Theorem 9 that if V (x)∩MZ 6= ∅ for each x ∈ Z, and so
in particular if Z is compact and Φ-invariant, then

P (a|Z) = sup
µ∈MZ

(
hµ(Φ) +

∫
Z
b dµ

)
.
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[6] A. Douady and J. Oesterlé, Dimension de Hausdorff des attracteurs, C. R. Acad. Sc.
Paris 290 (1980), 1135–1138.

[7] K. Falconer, A subadditive thermodynamic formalism for mixing repellers, J. Phys. A
21 (1988), L737–L742.

[8] G. Keller, Equilibrium States in Ergodic Theory, London Mathematical Society Stu-
dent Texts 42, Cambridge University Press, 1998.

[9] H. McCluskey and A. Manning, Hausdorff dimension for horseshoes, Ergodic Theory
Dynam. Systems 3 (1983), 251–260.

[10] W. Parry and M. Pollicott, Zeta Functions and the Periodic Orbit Structure of Hy-
perbolic Dynamics, Astérisque 187-188, 1990.
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