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Abstract. We introduce a version of the nonlinear thermodynamic
formalism for flows. Moreover, we discuss the existence, uniqueness, and
characterization of equilibrium measures for almost additive families of
continuous functions with tempered variation. We also consider with
some care the special case of additive families for which it is possible
to strengthen some of the results. The proofs are mainly based on
multifractal analysis.

1. Introduction

Our main aim is introduce a version for flows of the nonlinear thermo-
dynamic formalism recently introduced in [14] for a dynamics with discrete
time. Besides introducing the notion of nonlinear topological pressure of a
family of continuous functions with respect to a flow, we discuss the exis-
tence, uniqueness, and characterization of equilibrium measures for an al-
most additive family of continuous functions with tempered variation with
respect to a flow. We consider in particular the special case of an additive
family of continuous functions for which is it is possible to strengthen some
of the results.

The topological pressure P (φ) of a continuous function φ : X → R with
respect to a continuous map T : X → X on a compact metric space was
introduced by Ruelle [26] for expansive maps and by Walters [28] in the
general case. They also established the variational principle

P (φ) = sup
µ

(
hµ(T ) +

∫
X
φdµ

)
,

with the supremum taken over all T -invariant probability measures µ on X
and where hµ(T ) denotes the Kolmogorov–Sinai entropy with respect to µ.
For corresponding results for continuous time we refer the reader to [12, 22].
The theory is quite broad and has many applications. We refer the reader
to the books [1, 11, 19, 20, 22, 23, 27, 29] for details and further references.

Given a continuous function F : R→ R, the nonlinear topological pressure
PF (φ) of a continuous function φ : X → R essentially replaces in the classical
notion the Birkhoff sum

(Snφ)(x) =
n−1∑
k=0

φ(T k(x))
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by the expression

nF

(
(Snφ)(x)

n

)
.

The corresponding formalism introduced in [14] also includes a variational
principle for the nonlinear topological pressure. Namely, under an addi-
tional assumption of abundance of ergodic measures (see Section 3 for the
definition), they proved that

PF (φ) = sup
µ

(
hµ(T ) + F

(∫
X
φdµ

))
, (1)

with the supremum taken over all T -invariant probability measures µ on X.
They also characterized the equilibrium measures, that is, the invariant
probability measures at which the supremum in (1) is attained.

Now we describe briefly our main results. Let Φ = (φt)t∈R be a continuous
flow on a compact metric space X and let F : Rd → R be a continuous
function for some d ∈ N. We start by introducing the notion of the nonlinear
topological pressure PF (A|Z) of a collection A = (a1, . . . , ad) of families
ai = (ait)t≥0 of continuous functions ait : X → R on a set Z ⊂ X as a
Charathéodory dimension characteristic (see Section 2 for the definition).
This allows us to consider arbitrary sets Z, and so possibly noncompact and
noninvariant sets. We say that a family of functions a = (at)t≥0 is almost
additive (with respect to Φ) if there exists C > 0 such that

−C ≤ at+s − at − as ◦ φt ≤ C
for every t, s > 0. Now assume that each family ai in A is almost additive,
has tempered variation, and satisfies supt∈[0,s] ‖ait‖∞ < ∞ for some s > 0.

Assuming that the pair (Φ, A) has an abundance of ergodic measures (see
Section 3), we establish the variational principle for the nonlinear topological
pressure

PF (A) = sup
µ∈M

{
hµ(Φ) + F

(
lim
t→∞

1

t

∫
X
At dµ

)}
,

where M denotes the set of all Φ-invariant probability measures on X and
At = (a1

t , . . . , a
d
t ) (see Theorem 4).

In Section 4 we discuss the existence and characterization of equilibrium
measures using in particular some machinery coming from multifractal anal-
ysis. Here we formulate only our main result. In order to do that we first
need to introduce a few additional notions. Let

L(A) =

{
lim
t→∞

1

t

∫
X
At dµ : µ ∈M

}
and

M(z) =

{
µ ∈M : lim

t→∞

1

t

∫
X
At dµ = z

}
.

We also define a function h : L(A)→ R by

h(z) = sup{hµ(Φ) : µ ∈M(z)}.
We say that a pair (Φ, A) is C1-regular if the following properties hold:

1. each family in span{a1, . . . , ad, 1} has a unique equilibrium measure
for the nonadditive topological pressure and intL(A) 6= ∅;
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2. the map µ 7→ hµ(Φ) is upper-semicontinuous.

Examples can be obtained from locally maximal hyperbolic sets. Finally,
given a continuous function F : Rd → R, we consider the set

K(F,A) =

{
lim
t→∞

1

t

∫
X
At dµ : µ is an equilibrium measure for (F,A)

}
.

The following theorem is our main result (see Theorem 6). In particular
it gives a characterization of equilibrium measures.

Theorem 1. If the pair (Φ, A) is C1-regular, then for each continuous func-
tion F : Rd → R the following properties hold:

1. K(F,A) is a nonempty compact set;
2. K(F,A) is the set of maximizers of the function h+ F ;
3. if K(F,A) ⊂ intL(A), then the equilibrium measures for (F,A) are

the elements of the set {νz : z ∈ K(F,A)}, where νz is an ergodic mea-
sure that is the unique equilibrium measure for some almost additive
family.

Our proof of Theorem 1 depends substantially on the multifractal anal-
ysis developed in [4], which thus encounters here a welcome nontrivial ap-
plication. More precisely, we use the following simplified multidimensional
version of Theorem 8 in that paper. Consider the level sets

Cz(A) =

{
x ∈ X : lim

t→∞

At(x)

t
= z

}
,

and let E(X) be the set of almost additive families (with respect to Φ) with
a unique equilibrium measure.

Theorem 2. Let Φ be a continuous flow on a compact metric space X
such that the map µ 7→ hµ(Φ) is upper-semicontinuous and assume that

span{a(1), . . . , ad, 1} ⊂ E(X). If z ∈ intL(A), then Cz(A) 6= ∅ and the
following properties hold:

1.

htop(Φ|Cz(A)) = max

{
hµ(Φ) : µ ∈M and lim

t→∞

1

t

∫
X
At dµ = z

}
;

2. there exists an ergodic measure νz ∈M such that

lim
t→∞

1

t

∫
X
Atdνz = z, νz(Cz(A)) = 1 and hνz(Φ) = htop(Φ|Cz(A));

3. the function z 7→ htop(Φ|Cz(A)) is continuous on intL(A).

Related results for a dynamics with discrete time were obtained indepen-
dently in [6] and [14]. While [14] uses mainly convex analysis, our approach
in the present paper is more inspired in [6], which takes into account some
connections between the nonlinear thermodynamic formalism and multifrac-
tal analysis (for a dynamics with discrete time). In this sense, the present
work also shows that there is a quite interesting connection between the
nonlinear thermodynamic formalism and multifractal analysis for a dynam-
ics with continuous time, which in fact is another main aspect of our work.
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2. Nonlinear topological pressure for flows

Let Φ = (φt)t∈R be a continuous flow on a compact metric space X. For
each t > 0, we consider the distance dt on X given by

dt(x, y) = max
{
d(φs(x), φs(y)) : s ∈ [0, t]

}
and for each x ∈ X and ε > 0 we define

Bt(x, ε) = {y ∈ X : dt(y, x) < ε}.

A family a = (at)t≥0 of continuous functions at : X → R is said to have
tempered variation if

lim
ε→0

lim
t→∞

γt(a, ε)

t
= 0, (2)

where

γt(a, ε) = sup
{
|at(y)− at(z)| : y, z ∈ Bt(x, ε) for some x ∈ X

}
.

Now let A = (a1, . . . , ad) be a finite collection of almost additive families
of continuous functions with tempered variation and consider a continuous
function F : Rd → R. We note that

lim
ε→0

lim
t→∞

γ̄t(A, ε)

t
= 0, (3)

where γ̄t(A, ε) is given by

sup

{
t

∣∣∣∣F(At(y)

t

)
− F

(
At(z)

t

)∣∣∣∣ : y, z ∈ Bt(x, ε) for some x ∈ X
}

with At(x) = (a1
t (x), . . . , adt (x)) for any x ∈ X and t ≥ 0. This can be shown

as follows. Since each family in A is almost additive, for each i ∈ {1, . . . , d}
there exists a constant Ki > 0 such that

|ait(x)|
t
≤ Ki for t > 0 and x ∈ X

(see [5]). Hence, we only need to consider F restricted to the compact set
[−K1,K1] × · · · × [−Kd,Kd] ⊂ Rd. By the uniform continuity of F on this
set, for each κ > 0 there exists η > 0 such that∣∣∣∣F(At(y)

t

)
− F

(
At(z)

t

)∣∣∣∣ < κ whenever

∥∥∥∥At(y)

t
− At(z)

t

∥∥∥∥ < η, (4)

where ‖·‖ denotes the l∞ norm on Rd. Let

γi(ε) = lim
t→∞

γt(a
i, ε)

t
for each i ∈ {1, . . . , d}.

There exists τ > 0 such that

γt(a
i, ε)/t < γi(ε) + η/2 for t > τ and i ∈ {1, . . . , d}.

By property (2), for any sufficiently small ε > 0 we have γi(ε) < η/2 and so
γt(a

i, ε)/t < η for i ∈ {1, . . . , d}. It follows from (4) that γ̄t(A, ε)/t < κ for
t > τ . Property (3) follows now from the arbitrariness of κ.
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Following [3], we introduce a nonlinear version of the nonadditive topolog-
ical pressure for noncompact sets. Given ε > 0, we say that a set Γ ⊂ X×R+

0
covers Z ⊂ X if ⋃

(x,t)∈Γ

Bt(x, ε) ⊃ Z

and we write

AF (x, t, ε) = sup

{
tF

(
At(y)

t

)
: y ∈ Bt(x, ε)

}
for (x, t) ∈ Γ.

For each Z ⊂ X and α ∈ R, let

MF (Z,A, α, ε) = lim
T→+∞

inf
Γ

∑
(x,t)∈Γ

exp(AF (x, t, ε)− αt) (5)

with the infimum taken over all countable sets Γ ⊂ X× [T,+∞) covering Z.
When α goes from −∞ to +∞, the quantity in (5) jumps from +∞ to 0 at
a unique value and we define

PF (A|Z , ε) = inf
{
α ∈ R : MF (Z,A, α, ε) = 0

}
.

Following the proof of Theorem 1 in [3], one can show that the limit

PF (A|Z) = lim
ε→0

PF (A|Z , ε)

exists. It is called the nonlinear topological pressure of A = (a1, . . . , ad) on
the set Z. When d = 1 and F is the identity map, we recover the nonadditive
topological pressure in [3].

Proposition 3. The following properties hold:

1. if Z1 ⊂ Z2, then PF (A|Z1) ≤ PF (A|Z2);
2. if Z =

⋃
i∈I Zi with I countable, then PF (A|Z) = supi∈I PF (A|Zi).

Proof. For the first property, observe that for each ε > 0 and α ∈ R we have

MF (Z1, A, α, ε) ≤MF (Z2, A, α, ε).

Then,

PF (A|Z1) = lim
ε→0

PF (A|Z1 , ε) ≤ lim
ε→0

PF (A|Z2 , ε) = PF (A|Z2).

Now we establish the second property. Since Zi ⊂ Z for every i ∈ I, the
first property says that PF (A|Zi) ≤ PF (A|Z) for i ∈ I, which implies that

sup
i∈I

PF (A|Zi) ≤ PF (A|Z).

To prove the reverse inequality, take ε > 0 and α > supi∈I PF (A|Zi , ε). Then
MF (Zi, A, α, ε) = 0 for i ∈ I. By definition, given η > 0 and T > 0, for each
i ∈ I there exists Γi ⊂ X × [T,∞) covering Zi such that∑

(x,t)∈Γi

exp(AF (x, t, ε)− αt) < η

2i
.

Hence, Γ =
⋃
i∈I Γi covers Z and∑

(x,t)∈Γ

exp(AF (x, t, ε)− αt) ≤
∑
i∈I

∑
(x,t)∈Γi

exp(AF (x, t, ε)− αt) ≤
∑
i∈I

η

2i
≤ η.
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Therefore, MF (Z,A, α, ε) ≤ η and since the constant η is arbitrary, we have
MF (Z,A, α, ε) = 0. Hence, by definition α ≥ PF (A|Z , ε). Finally, letting
α→ supi∈I PF (A|Zi), we obtain

sup
i∈I

PF (A|Zi , ε) ≥ PF (A|Z , ε). (6)

Proceeding as in the proof of Theorem 4 in [3], one can show that

PF (A|Zi) ≥ PF (A|Zi , ε)− lim
t→∞

γ̄t(A, ε)

t
. (7)

Hence, it follows from (6) and (7) that

sup
i∈I

PF (A|Zi) ≥ sup
i∈I

PF (A|Zi , ε)− lim
t→∞

γ̄t(A, ε)

t

≥ PF (A|Z , ε)− lim
t→∞

γ̄t(A, ε)

t
.

Letting ε→ 0 and using property (3), we obtain

sup
i∈I

PF (A|Zi) ≥ PF (A|Z),

which completes the proof of the proposition. �

3. Variational principle

Let Φ be a continuous flow on a compact metric space X. In this section,
we consider the case when each family in the collection A = (a1, . . . , ad)
belongs to the set A(X) of almost additive families of continuous functions
with tempered variation such that supt∈[0,s] ‖at‖∞ < ∞ for some s > 0.

When this happens, we shall simply write A ∈ A(X)d. In this case, for each
µ ∈M in the set of Φ-invariant probability measures on X we have

lim
t→∞

1

t

∫
X
ait dµ =

∫
X

lim
t→∞

ait(x)

t
dµ(x)

for each i ∈ {1, . . . , d} (see [5] for details). Following [14], we say that the
pair (Φ, A) has an abundance of ergodic measures if for each µ ∈ M and
ε > 0, there exists an ergodic measure ν ∈M such that

hν(Φ) + F

(
lim
t→∞

1

t

∫
X
Atdν

)
≥ hµ(Φ) + F

(
lim
t→∞

1

t

∫
X
Atdµ

)
− ε.

When F : Rd → R is convex, the pair (Φ, A) has an abundance of ergodic
measures for every continuous flow Φ and every collection A of almost ad-
ditive families of continuous functions. In fact, by Kingman’s subadditive
ergodic theorem, for each µ ∈M and each i ∈ {1, . . . , d} the limit

bi(x) := lim
t→∞

ait(x)

t

exists for µ-almost every x ∈ X and bi is a measurable function. Now let
µ ∈M be an arbitrary measure and consider its ergodic decomposition with
respect to Φ (described by a probability measure θ on M concentrated on
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the subset of ergodic measures Merg). Using Jensen’s inequality, it follows
from the continuity of F that

lim
t→∞

F

(
1

t

∫
X
At dµ

)
= F

(∫
M

(∫
X
b1 dν

)
dθ(ν), . . . ,

∫
M

(∫
X
bd dν

)
dθ(ν)

)
≤
∫
M

F

(∫
X
b1 dν, . . . ,

∫
X
bd dν

)
dθ(ν)

=

∫
M

lim
t→∞

F

(
1

t

∫
X
At dν

)
dθ(ν).

Since hµ(Φ) =
∫
M
hν(Φ)dθ(ν) (see for example Theorem 9.6.2 in [21]) we

obtain

hµ(Φ) + lim
t→∞

F

(
1

t

∫
X
At dµ

)
≤
∫
M

[
hν(Φ) + lim

t→∞
F

(
1

t

∫
X
At dν

)]
dθ(ν),

which, in particular, guarantees the existence of an abundance of ergodic
measures for (Φ, A).

Moreover, we say that Φ has entropy density of ergodic measures if for
every µ ∈ M there exist ergodic invariant measures νn for n ∈ N such that
νn → µ in the weak∗ topology and hνn(Φ)→ hµ(Φ) when n→∞. Note that
if Φ has entropy density of ergodic measures, then (Φ, A) has an abundance
of ergodic measures for every collection A of almost additive families of
continuous functions.

We say that a continuous flow Φ has weak specification at scale δ > 0 if
there exists γ > 0 such that for each finite set of orbit segments {(xi, ti)}ki=1
there exists a point y ∈ X and times γ1, . . . , γk−1 ∈ [0, γ] such that

dtj (φsj−1+γj−1(y), xj) < δ for j = 1, . . . , k,

where

sj =

j∑
i=1

ti +

j−1∑
i=1

γi and s0 = γ0 = 0.

The flow Φ is said to have weak specification if it has weak specification at
every scale. When for every δ > 0 one can take y to be periodic and the times
γi to be close to γ, we say that Φ has specification (see for example [10]).
It was proved in [16] that every expansive flow with the weak specification
property has entropy density of ergodic measures. This includes locally
maximal hyperbolic sets for topologically mixing C1 flows.

Theorem 4. Let Φ be a continuous flow on a compact metric space X and
take A ∈ A(X)d. Given a continuous function F : Rd → R, if the pair (Φ, A)
has an abundance of ergodic measures, then

PF (A) = sup
µ∈M

{
hµ(Φ) + F

(
lim
t→∞

1

t

∫
X
At dµ

)}
= sup

µ∈M

{
hµ(Φ) + lim

t→∞
F

(
1

t

∫
X
At dµ

)}
.

(8)

Proof. We divide the proof into steps.
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Step 1. First we obtain the inequality

PF (A) ≤ sup
µ∈M

{
hµ(Φ) + lim

t→∞
F

(
1

t

∫
X
At dµ

)}
. (9)

Given x ∈ X, we define a probability measure on X by

µx,t =
1

t

∫ t

0
δφs(x) ds,

where δy is the probability measure concentrated on y. Let also V (x) be the
set of all sublimits of the family (µx,t)t>0.

Lemma 1 ([5, Lemma 2.2]). Let a ∈ A(X). Given x ∈ X and µ ∈ V (x),
there exists an increasing sequence (tn)n∈N such that

lim
n→∞

atn(x)

tn
= lim

t→∞

1

t

∫
X
at dµ.

Lemma 2. Let Γ ⊂ X × {1} be a finite cover of X. For the open cover
V = {V1, . . . , Vr} of X, where Vj = B1(xj , ε/2) with (xj , 1) ∈ Γ, there exist
m,T ∈ N with T arbitrary large and a sequence U = Vi1 · · ·ViT such that:

1. x ∈
⋂T
r=1 φ−r+1Vir and

F

(
AT (x)

T

)
≤ lim

t→∞
F

(
1

t

∫
X
At dµ

)
+ δ;

2. there exists a subset V ∈ (Vm)k of U of length km ≥ T −m such that
H(V ) ≤ m(hµ(Φ) + δ).

Proof of the lemma. Since F : Rd → R is uniformly continuous on the com-
pact set S = [r1, s1]× · · · × [rd, sd] with

ri = inf
µ∈M

lim
t→∞

1

t

∫
X
ait dµ and si = sup

µ∈M
lim
t→∞

1

t

∫
X
ait dµ,

given δ > 0, there exists ρ > 0 such that |F (x) − F (y)| < δ whenever
x, y ∈ S and ‖x− y‖ < ρ. By Lemma 1, for each i ∈ {1, . . . , d} there exists
an increasing sequence (tn)n∈N (possibly depending on the family ai) such
that ∣∣∣∣aitn(x)

tn
− lim
t→∞

1

t

∫
X
ait dµ

∣∣∣∣ < ρ

for any sufficiently large n ∈ N. Then, taking T sufficiently large, we obtain

F

(
AT (x)

T

)
≤ lim

t→∞
F

(
1

t

∫
X
At dµ

)
+ δ,

which proves the first property. The second property follows directly from
Lemma 2.3 in [5]. �

Given δ > 0, m ∈ N and u ∈ R, let Xm,u be the set of all points x ∈ X
satisfying the two properties in Lemma 2 for some measure µ ∈ V (x) with

u− δ ≤ lim
t→∞

F

(
1

t

∫
X
At dµ

)
≤ u+ δ.
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Moreover, let nT be the number of sequences U ∈ VT satisfying the two
properties in Lemma 2 for some point x ∈ Xm,u. Proceeding as in the proof
of Lemma 4.3.3 in [1], we find that

nT ≤ exp[T (hµ(Φ) + 2δ)]

for any sufficiently large T . For each τ ∈ N, the collection of all U ∈ VT

satisfying the two properties in Lemma 2 for some x ∈ Xm,u and T > τ
covers Xm,u. Then

MF (Xm,u, A, α, ε)

≤ lim
τ→∞

+∞∑
T=τ

nT exp

[
γ̄T (A, ε) + T

(
lim
t→∞

F

(
1

t

∫
X
At dµ

)
+ δ

)
− αT

]

≤ lim
τ→∞

+∞∑
T=τ

exp

[
T

(
hµ(Φ) + γ̄(ε) + lim

t→∞
F

(
1

t

∫
X
At dµ

)
− α+ 3δ

)]
,

where

γ̄(ε) = lim
t→∞

γ̄t(A, ε)

t
.

Now take

K = sup
µ∈M

{
hµ(Φ) + lim

t→∞
F

(
1

t

∫
X
At dµ

)}
and

θ = exp

[
K − α+ 3δ + γ̄(ε)

]
.

For α > K + 3δ + γ̄(ε) we have θ < 1, and so

MF (Xm,u, A, α, ε) ≤ lim
τ→∞

+∞∑
T=τ

θT = 0.

Therefore, α > PF (A|Xm,u , ε). Now let

rF = inf
µ∈M

lim
t→∞

F

(
1

t

∫
X
At dµ

)
and sF = sup

µ∈M
lim
t→∞

F

(
1

t

∫
X
At dµ

)
.

For each u ∈ [rF , sF ] there exist u1, . . . , ur ∈ R such that |u − uj | < δ for
some j ∈ {1, . . . , r}. Then

X =
⋃
m∈N

r⋃
j=1

Xm,uj .

Applying the second property in Proposition 3, we obtain

K + 3δ + lim
ε→0

γ̄(ε) ≥ lim
ε→0

sup
m,j

PF (A|Xm,uj , ε)

= lim
ε→0

PF (A|X , ε) = PF (A|X) = PF (A).

Together with property (3), this gives that PF (A) ≤ K + 3δ and it follows
from the arbitrariness of δ that PF (A) ≤ K.
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Step 2. We proceed with the proof of the reverse inequality

PF (A) ≥ sup
µ∈M

{
hµ(Φ) + lim

t→∞
F

(
1

t

∫
X
At dµ

)}
.

Lemma 3. For each ergodic µ ∈M, we have

PF (A) ≥ hµ(Φ) + lim
t→∞

F

(
1

t

∫
X
At dµ

)
.

Proof of the lemma. We proceed in a similar manner to that in the proof of
Lemma 2.4 in [5]. Given ε > 0, there exist δ ∈ (0, ε), a measurable partition
ξ = {C1, . . . , Cm} of X and an open cover V = {V1, . . . , Vk} of X for some
k ≥ m such that:

• diamCj ≤ ε, Vi ⊂ Ci and µ(Ci \ Vi) < δ2 for i = 1, . . . ,m;

• the set E =
⋃k
i=m+1 Vi satisfies µ(E) < δ2.

Let ν be a measure in the ergodic decomposition of µ with respect to the
time-1 map φ1 (note that µ need not be ergodic with respect to φ1). Given
x ∈ X and n ∈ N, let sn(x) be the number of integers l ∈ [0, n) such
that φl(x) ∈ E. By the uniform continuity of F , there exist a set D with
ν(D) ≥ 1− 2δ and N ∈ N such that

sn(x)

n
< 2δ,

∣∣∣∣F(An(x)

n

)
− lim
t→∞

F

(
1

t

∫
X
At dµ

)∣∣∣∣ < δ (10)

and
ν(ξn(x)) ≤ exp[(−hν(φ1, ξ) + δ)n] (11)

for all x ∈ D and n > N , where ξn =
∨n
j=0 φ−jξ.

Now let ∆ be a Lebesgue number of the cover V and take ρ > 0 with
2ρ < ∆. Given α ∈ R, by definition one can take N1 > N such that for each
n > N1 there exists Γ ⊂ X × [n,∞) covering X such that∣∣∣∣ ∑

(x,t)∈Γ

exp(AF (x, t, ρ)− αt)−MF (X,A, α, ρ)

∣∣∣∣ < δ. (12)

Using (10) and (11), one can proceed as in the proof of Lemma 12 in [3] to
obtain

card Γl ≥ ν(Bl ∩D) exp
[
hν(φ1, ξ)l − (1 + 2 log card ξ)lδ

]
(13)

for l ∈ N, where Bl =
⋃

(x,t)∈Γl
Bt(x, ρ) and

Γl = {(x, t) ∈ Γ : Bl(x, ρ) ∩D 6= ∅}.
It follows from the second inequality in (10) that

sup
y∈Bl(x,ρ)

lF

(
Al(y)

l

)
≥ l
(

lim
t→∞

F

(
1

t

∫
X
At dµ

)
− δ
)
− γ̄l(A, ρ) (14)

for every l > N1 and (x, t) ∈ Γl.
Note that ∑

(x,t)∈Γ

exp(AF (x, t, ρ)− αt)

≥
∞∑

l=N1

∑
(x,t)∈Γl

exp

[
sup

y∈Bl(x,ρ)
lF

(
Al(y)

l

)
− αl

]
.
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Applying (13) and (14) we obtain∑
(x,t)∈Γ

exp(AF (x, t, ρ)− αt) ≥

≥
∞∑

l=N1

ν(Bl ∩D) exp

[
l

(
b− γ̄l(A, ρ)

l
− α

)
− 2δl(1 + log card ξ)

]
,

where

b = hν(φ1, ξ) + lim
t→∞

F

(
1

t

∫
X
At dµ

)
.

Now assume that N1 is so large that

γ̄l(A, ρ)

l
≤ lim

t→∞

γ̄t(A, ρ)

t
+ δ for l ≥ N1

and take

α < b− lim
t→∞

γ̄t(A, ρ)

t
.

One can also take δ sufficiently small such that

α < b− lim
t→∞

γ̄t(A, ρ)

t
− 2δ(1 + log card ξ)− δ.

Then ∑
(x,t)∈Γ

exp(AF (x, t, ρ)− αt) ≥
∞∑

l=N1

ν(Bl ∩D) ≥ ν(D) ≥ 1− 2δ.

Together with (12), we obtain MF (X,A, α, ρ) > 1− 3δ > 0, which gives

PF (A, ρ) ≥ hν(φ1, ξ) + lim
t→∞

F

(
1

t

∫
X
At dµ

)
− lim
t→∞

γ̄t(A, ρ)

t
.

Since

lim
ρ→0

lim
t→∞

γ̄t(A, ρ)

t
= 0,

one can proceed as in [5] to conclude that

PF (A) ≥ hν(φ1) + lim
t→∞

F

(
1

t

∫
X
At dµ

)
.

Finally, integrating with respect to ν we obtain

PF (A) ≥ hµ(φ1) + lim
t→∞

F

(
1

t

∫
X
At dµ

)
= hµ(Φ) + lim

t→∞
F

(
1

t

∫
X
At dµ

)
,

which completes the proof of the lemma. �

Now let µ ∈M be an arbitrary measure. It follows from Lemma 3 and the
assumption that (Φ, A) has an abundance of ergodic measures, that given
ε > 0 there exists ν ∈Merg such that

PF (A) ≥ hν(Φ) + lim
t→∞

F

(
1

t

∫
X
At dν

)
≥ hµ(Φ) + lim

t→∞
F

(
1

t

∫
X
At dµ

)
− ε.
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Since µ and ε are arbitrary, we obtain

PF (A) ≥ sup
µ∈M

{
hµ(Φ) + lim

t→∞
F

(
1

t

∫
X
At dµ

)}
.

This completes the proof of the theorem. �

Under the hypotheses of Theorem 4 one can also obtain a variational
principle over the ergodic invariant measures, that is, if the pair (Φ, A) has
an abundance of ergodic measures then

PF (A) = sup
µ∈Merg

{
hµ(Φ) + lim

t→∞
F

(
1

t

∫
X
At dµ

)}
.

4. Existence and characterization of equilibrium measures

In this section we discuss the existence and characterization of equilib-
rium measures. We shall use some machinery coming from the multifractal
analysis developed in [4].

4.1. Existence of equilibrium measures. Following Theorem 4, we say
that a measure µ ∈ M is an equilibrium measure for the pair (F,A) with
respect to the flow Φ if

PF (A) = hµ(Φ) + lim
t→∞

F

(
1

t

∫
X
At dµ

)
.

Theorem 5. Let Φ be a continuous flow on a compact metric space X
such that the entropy map µ 7→ hµ(Φ) is upper-semicontinuous. Moreover,

take A ∈ A(X)d and let F : Rd → R be a continuous function. If the pair
(Φ, A) has an abundance of ergodic measures, then there exists at least one
equilibrium measure for (F,A).

Proof. Since the map µ 7→ hµ(Φ) is upper-semicontinuous, and the function
F as well as the map µ 7→ limt→∞

1
t

∫
X At dµ are continuous (see for example

the proof of Theorem 2.5 in [5]), the map

M 3 µ 7→ hµ(Φ) + lim
t→∞

F

(
1

t

∫
X
At dµ

)
is upper-semicontinuous. Hence, the compactness of M guarantees the ex-
istence of a measure µA ∈M such that

sup
µ∈M

{
hµ(Φ) + lim

t→∞
F

(
1

t

∫
X
At dµ

)}
= hµA(Φ) + lim

t→∞
F

(
1

t

∫
X
At dµA

)
.

Thus, it follows from Theorem 4 that µA is an equilibrium measure for the
pair (F,A). �

4.2. Characterization of equilibrium measures. Given a pair (Φ, A),
we consider the set

L(A) =

{
lim
t→∞

1

t

∫
X
At dµ : µ ∈M

}
⊂ Rd.
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Since the map µ 7→ limt→∞
1
t

∫
X At dµ is continuous and M is compact and

connected, the set L(A) is a compact and connected subset of Rd. For each
z ∈ Rd, we also consider the level sets

M(z) =

{
µ ∈M : lim

t→∞

1

t

∫
X
At dµ = z

}
and

Cz(A) =

{
x ∈ X : lim

t→∞

At(x)

t
= z

}
.

We say that a pair (Φ, A) is C1-regular if the following properties hold:

1. each family in span{a1, . . . , ad, 1} has a unique equilibrium measure
for the nonadditive topological pressure and intL(A) 6= ∅;

2. the map µ 7→ hµ(Φ) is upper-semicontinuous.

Notice that by Proposition 6 in [4], if the pair (Φ, A) is C1-regular, then for
each i ∈ {1, . . . , d} the function s 7→ P (sai) is C1 for each s ∈ R (actually,
this is one of the reasons behind the name C1-regular in the definition).
Moreover, it follows from Theorem 1.2 in [5] that if Λ ⊂ X is a locally
maximal hyperbolic set for a topologically mixing C1 flow Φ and each family
ai in A has bounded variation, then (Φ, A) is C1-regular.

Given a continuous function F : Rd → R, we consider the set

K(F,A) =

{
lim
t→∞

1

t

∫
X
At dµ : µ is an equilibrium measure for (F,A)

}
.

We also define a function h : L(A)→ R by

h(z) = sup{hµ(Φ) : µ ∈M(z)}. (15)

Finally, let E(X) ⊂ A(X) be the set of all families with a unique equilibrium
measure. The following theorem is our main result.

Theorem 6. Let Φ be a continuous flow on a compact metric space X and
take A ∈ A(X)d such that the pair (Φ, A) is C1-regular. For each continuous
function F : Rd → R the following properties hold:

1. K(F,A) is a nonempty compact set;
2. K(F,A) is the set of maximizers of the function z 7→ h(z) + F (z);
3. if K(F,A) ⊂ intL(A), then the equilibrium measures for (F,A) are

the elements of the set {νz : z ∈ K(F,A)}, where each νz satisfies the
following:
• νz is ergodic;
• νz is the unique invariant measure in M(z) with νz(Cz(A)) = 1

such that hνz(Φ) = h(z);
• νz is the unique equilibrium measure for the almost additive fam-

ily of continuous functions given by

(bz)t = 〈q(z), At − z〉 − h(z)t

for some q(z) ∈ Rd.

Proof. We prove the theorem through some lemmas, which are obtained
using the multifractal analysis result in Theorem 2.

Lemma 4. K(F,A) is a nonempty compact subset of L(A).
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Proof of the lemma. Let (zn)n∈N be a sequence in K(F,A) converging to a
point z ∈ L(A). For each n ∈ N there exists an equilibrium measure µn ∈M

for (F,A) such that

zn = lim
t→∞

1

t

∫
X
At dµn.

Eventually passing to a subsequence, one can assume that there exists µ ∈M

such that µn → µ in the weak∗ topology. Since the entropy map µ 7→ hµ(Φ)

is upper-semicontinuous, and µ 7→ limt→∞
1
t

∫
X At dµ and F : Rd → R are

continuous, we obtain

PF (A) = lim
n→∞

[
hµn(Φ) + lim

t→∞
F

(
1

t

∫
X
At dµn

)]
≤ hµ(T ) + lim

t→∞
F

(
1

t

∫
X
At dµ

)
.

This readily implies that µ ∈ M is also an equilibrium measure for (F,A).
Since

z = lim
t→∞

1

t

∫
X
At dµ,

we conclude that z ∈ K(F,A). Hence, K(F,A) is a closed subset of Rd.
Since K(F,A) is also bounded, we conclude that it is a compact set. More-
over, by Theorem 5 we have K(F,A) 6= ∅. �

Lemma 5. For each z ∈ intL(A) there exists an ergodic measure νz ∈ M

such that

lim
t→∞

1

t

∫
X
Atdνz = z and νz(Cz(A)) = 1.

Moreover, νz is the unique equilibrium measure for some almost additive
family bz ∈ E(X).

Proof of the lemma. Notice that by the definition of the function h in (15)
and the first item of Theorem 2, we have

h(z) = htop(Φ|Cz(A)) for z ∈ intL(A).

For each z ∈ intL(A), consider the family Q = (Qt)t≥0 given by

Qt = 〈q, At − tz〉 − h(z)t

and define Ξz(q) = P (Q). By Lemmas 10 and 11 in [4], we have that

inf
q∈Rd

Ξz(q) ≥ 0 for z ∈ L(A),

inf
q∈Rd

Ξz(q) = 0 for z ∈ intL(A),

and there exists at least one point q(z) ∈ Rd such that Ξz(q(z)) = 0. Since

lim
t→∞

1

t

∫
X
Qt dµ = lim

t→∞

1

t

∫
X
〈q, At〉 dµ− (〈q, z〉+ h(z))

for every µ ∈ M and span{a1, . . . , ad, 1} ⊂ E(X), we obtain that Q ∈ E(X)
for each q ∈ Rd. Hence, by Proposition 6 in [4] the map q 7→ Ξz(q) is of
class C1, and we conclude that ∂qΞz(q(z)) = 0.

Now let νz be the unique equilibrium measure for the family bz given by

(bz)t = 〈q(z), At − tz〉 − h(z)t.
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Again by Proposition 6 in [4], the measure νz is ergodic and

lim
t→∞

1

t

∫
X

(At − tz)dνz = ∂qΞz(q(z)) = 0,

which implies that

lim
t→∞

1

t

∫
X
At dνz = z.

Moreover, proceeding as in the proof of Theorem 8 in [4], we can also verify
that νz(Cz(A)) = 1. �

Lemma 6. For each z ∈ L(A) there exists µ ∈ M such that h(z) = hµ(Φ).
In addition, when z ∈ intL(A) this measure is unique and coincides with νz.

Proof of the lemma. Take z ∈ L(A). By definition, there exists a measure
µ ∈M such that z = limt→∞

1
t

∫
X At dµ and so M(z) 6= ∅. Since the entropy

map µ 7→ hµ(Φ) is upper-semicontinuous and the set M(z) is compact, there
exists a measure µ ∈M(z) maximizing the metric entropy.

Now take z ∈ intL(A) and let µ ∈ M(z) be a measure maximizing the
metric entropy. By Lemma 5, there exists an ergodic measure νz ∈ M(z)
that is the unique equilibrium measure for the almost additive continuous
function bz. Since

lim
t→∞

1

t

∫
X
At dµ = lim

t→∞

1

t

∫
X
At dνz,

one can easily verify that

lim
t→∞

1

t

∫
X

(bz)tdµ = lim
t→∞

1

t

∫
X

(bz)t dνz.

Then

hµ(Φ) + lim
t→∞

1

t

∫
X

(bz)t dµ ≥ hνz(Φ) + lim
t→∞

1

t

∫
X

(bz)tdνz = P (bz),

which implies that µ is also an equilibrium measure for the family bz. Since
bz ∈ E(X), we conclude that µ = νz. �

Lemma 7. z ∈ K(F,A) if and only if z maximizes the function E := h+F .

Proof of the lemma. First take z ∈ L(A) maximizing E. By Lemma 6, there
exists µ ∈M(z) such that h(z) = hµ(Φ). Then

hµ(Φ) + lim
t→∞

F

(
1

t

∫
X
At dµ

)
= h(z) + F (z)

≥ sup
w∈L(A)

sup
η∈M(w)

{
hη(Φ) + F

(
lim
t→∞

1

t

∫
X
At dη

)}
= sup

η∈M

{
hη(Φ) + lim

t→∞
F

(
1

t

∫
X
At dη

)}
,

and µ ∈M is an equilibrium measure for (F,A). That is, z ∈ K(F,A).
Conversely, assume that z ∈ K(F,A). By definition, there exists an

equilibrium measure µ ∈ M for (F,A) such that z = limt→∞
1
t

∫
X At dµ.
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Then

E(z) = h(z) + F (z)

≥ hµ(Φ) + F

(
lim
t→∞

1

t

∫
X
At dµ

)
= sup

µ∈M

{
hµ(Φ) + lim

t→∞
F

(
1

t

∫
X
At dµ

)}
= sup

w∈L(A)
E(w),

which completes the proof of the lemma. �

Items (1) and (2) are Lemmas 4 and 7, respectively. Now we estab-
lish item (3). By definition, for each z ∈ K(F,A) there exists an equilib-
rium measure µ ∈ M for (F,A) such that limt→∞

1
t

∫
X At dµ = z. When

K(F,A) ⊂ intL(a), it follows from Lemmas 5 and 6 that µ is the unique
measure in M(z) and that µ = νz, where νz is an ergodic measure that is
the unique equilibrium measure for the family bz ∈ E(X). �

Proposition 7. Let (Φ, A) be a C1-regular pair. Then the function h is
upper-semicontinuous, finite and concave on L(A). Moreover, h is continu-
ous on intL(A).

Proof. We first show that h is upper-semicontinuous. Take z ∈ L(A) and
consider a sequence (zn)n∈N ⊂ L(A) such that zn → z when n → ∞. By
Lemma 6 and if necessary passing to a subsequence, for each n ∈ N there
exists µn ∈ M(zn) such that h(zn) = hµn(Φ) and µn → µ in the weak∗

topology when n→∞, for some measure µ ∈M. We also have

lim
t→∞

1

t

∫
X
At dµ = lim

n→∞
lim
t→∞

1

t

∫
X
At dµn = lim

n→∞
zn = z,

that is, µ ∈M(z). Since µ 7→ hµ(Φ) is upper-semicontinuous, we obtain

lim
n→∞

h(zn) = lim
n→∞

hµn(Φ) ≤ hµ(Φ) ≤ h(z)

and so h is upper-semicontinuous on L(A). The compactness of L(A)
together with the upper-semicontinuity of h on L(A) and the fact that
M(z) 6= ∅ for each z ∈ L(A), guarantee that h is finite on L(A).

In order to prove that h is concave, take z1, z2 ∈ L(A). By Lemma 6,
there exist µ1 ∈ M(z1) and µ2 ∈ M(z2) such that hµ1(Φ) = h(z1) and
hµ2(Φ) = h(z2). Since the metric entropy is affine, for each t ∈ [0, 1] we have

h(tz1 + (1− t)z2) ≥ htµ1+(1−t)µ2(Φ)

= thµ1(Φ) + (1− t)hµ2(Φ)

= th(z1) + (1− t)h(z2),

which implies that h is concave on L(A), as desired. The continuity of h on
intL(A) follows directly from item 3 in Theorem 2. �

Remark 1. In the one-dimensional case d = 1 with A = a, we actually
obtain that h is continuous on L(a). In fact, since h is upper-semicontinuous
and finite on the interval L(a), one can easily verify that h is also continuous
on ∂L(a). Therefore, h is continuous on the closed interval L(a). In the
multidimensional case, the function h may be discontinuous on ∂L(A) (see
the recent work [30]).
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We establish one further result concerning the uniqueness of equilibrium
measures.

Theorem 8. Let (Φ, A) be a C1-regular pair and let F : Rd → R be a
continuous function that is strictly concave on L(A). If E = h + F attains
its maximum on intL(A), then there exists a unique equilibrium measure for
(F,A) and this equilibrium measure is ergodic.

Proof. By Proposition 7, the function h is upper-semicontinuous on L(A).
This implies that E is also upper-semicontinuous on L(A). By the com-
pactness of L(A), there exists at least one point in L(A) maximizing E. By
assumption, there is no maximizer in ∂L(A). Since h is concave and F is
assumed to be strictly concave, the function E is also strictly concave. Then
there exists a unique point z∗ ∈ intL(A) such that E(z∗) is a maximum. It
follows from Theorem 6 that

K(F,A) = {z∗} ⊂ intL(A)

and that νz∗ is the unique equilibrium measure for (F,A), where νz∗ is an
ergodic measure that is the unique equilibrium for the family bz given by
item 3 of Theorem 6. �

We note that the concavity of F alone does not guarantee the uniqueness
of equilibrium measures for (F,A). In fact, (F,A) may have an uncountable
number of equilibrium measures (see items (a) and (b) in Figure 1). When
F is strictly concave, it may happen that the maximizer of E lies in ∂L(A),
in which case we are not able to apply Theorem 6 to characterize the equi-
librium measures (see item (d) in Figure 1). The conditions in Theorem 8
are verified in item (c) in Figure 1, where thus we have a unique equilibrium
measure for (F,A).

5. The additive case

In this section we consider the particular case when the family of functions
is additive. Given a continuous function a : X → R, let

at(x) =

∫ t

0
(a ◦ φs)(x)ds for x ∈ X and t ≥ 0.

Clearly, the family a = (at)t≥0 satisfies

at+s(x) = at(x) + as(φs(x)) for x ∈ X and t, s ≥ 0.

When compared to the almost additive setup, in this case we have more
tools to deal with the problem of existence and uniqueness of nonlinear
equilibrium measures.

We say that a function a : X → R is cohomologous to another function
b : X → R (with respect to the flow Φ) if there exists a measurable bounded
function q : X → R such that

a(x)− b(x) = lim
s→0

q(φs(x))− q(x)

s

for every x ∈ X. Consider the families

ait =

∫ t

0
(ai ◦ φs)ds for i ∈ {1, . . . , d}.
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z

E(z)

α βz1 z2

(a) K(F,A) = [z1, z2] ⊂ intL(A).

z

E(z)

α z2 = βz1

(b) K(F,A) = [z1, β] 6⊂ intL(A).

z

E(z)

βα z∗

(c) K(F,A) = {z∗} ⊂ intL(A).

z

E(z)

α z2 = β

(d) K(F,A) = {β} 6⊂ intL(A).

Figure 1. One-dimensional concave case: some possible
shapes for the function E : L(A) := [α, β]→ R.

By Kingman’s subadditive ergodic theorem we have

L(A) =

{∫
X
Adµ : µ ∈M

}
and M(z) =

{
µ ∈M :

∫
X
Adµ = z

}
,

where A is the vector of functions given by A(x) = (a1(x), . . . , ad(x)) for
x ∈ X. Note that when ai is cohomologous to a constant ci ∈ R for each
i ∈ {1, . . . , d}, we have

∫
X Adµ = (c1, . . . , cd) for every µ ∈M. This implies

that intL(A) = ∅ and M(z) = ∅ for z 6= (c1, . . . , cd).
In the additive case, inspired by [14], we say that a pair (Φ, A) is Cr-

regular if for each i ∈ {1, . . . , d} the function ai is not cohomologous to a
constant and the following properties hold:

1. each function in span{a1, . . . , ad, 1} has a unique equilibrium measure
for the classical topological pressure;

2. for each z ∈ intL(A) the map Rd 3 q 7→ P (〈q, A − z〉) is finite, Cr,
strictly convex, and for r ≥ 2 the second derivative matrix

∂2
qP (〈q, A− z〉)

is positive definite for every q ∈ Rd;
3. the map µ 7→ hµ(Φ) is upper-semicontinuous.
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In contrast to what happens in the nonadditive case, in the notion of regular
pair for the additive setup we can talk about Cr-regular pairs with r > 1,
where r = ω is the real analytic case. This happens because of the following
result, which follows from Proposition 9 and Lemma 1 in [2].

Proposition 9. Let Λ ⊂ X be a locally maximal hyperbolic set for a C1

flow Φ such that Φ|Λ is topologically mixing. Then the following properties
hold:

1. the entropy map µ 7→ hµ(Φ) is upper-semicontinuous;
2. each Hölder continuous function a : X → R has a unique equilibrium

measure;
3. given Hölder continuous functions a, b : X → R, the pressure function

R 3 t 7→ P (ta+ b) is real analytic; moreover, for each t ∈ R we have

d2

dt2
P (ta+ b) ≥ 0,

with equality if and only if a is cohomologous to a constant;
4. if every function in A = (a1, . . . , ad) is Hölder continuous, then the

second derivative matrix

∂2
qP (〈q, A− z〉 − p)

is positive definite for every z ∈ intL(A), q ∈ Rd and p ∈ R; in
particular, the map Rd 3 q 7→ P (〈q, A − z〉) is strictly convex for
every z ∈ intL(A).

Notice that by Proposition 9 the pair (Φ|Λ, A) is Cω-regular when Λ ⊂ X
is a locally maximal hyperbolic set for a topologically mixing C1 flow and
each ai : Λ → R is a Hölder continuous function not cohomologous to a
constant.

Proposition 10. If the pair (Φ, A) is Cr-regular, then the map h|intL(A)

is Cr−1. If (Φ, A) is Cω-regular, then h|intL(A) is real analytic. Moreover,
h : intL(A)→ R is strictly concave.

Proof. By Theorem 10 in [2], if the pair (Φ, A) is Cr-regular, then the en-
tropy spectrum

intL(A) 3 z 7→ htop(Φ|Cz(A)) (16)

is Cr−1. Moreover, if (Φ, A) is Cω, then the entropy spectrum in (16) is
also Cω. Since the first item of Theorem 2 implies that h(z) = htop(Φ|Cz(A))
for every z ∈ intL(A), we obtain the desired regularity of h.

Now assume 0 ∈ intL(A), without loss of generality. By hypothesis, the
map Rd 3 q 7→ P (〈q, A〉) is strictly convex, Cr and finite. Moreover, we
have

P (〈q, A〉) = sup
z∈L(A)

[h(z) + 〈q, z〉].

Hence, since intL(A) 6= ∅, it follows directly from Theorem 11.13 in [25]
that h is strictly concave on intL(A). �

Note that in order to prove Theorem 6 we do not need that the pair
(Φ, A) is Cr-regular as defined in this section. In fact the second item in the
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definition is only used to establish the regularity and strict concavity of the
function h.

Based on the strict concavity of h, we are able to improve Theorem 8
in the additive setup, by requiring F to be only concave instead of strictly
concave.

Theorem 11. Let (Φ, A) be a Cr-regular pair and let F : R → R be a
continuous function that is concave on L(A). Then there exists a unique
equilibrium measure for (F,A) and this equilibrium measure is ergodic.

Example 1 (Uniqueness for the classical case). When r ≥ 2, A = a and
F is the identity map, which is a concave continuous function, we recover
the uniqueness of equilibrium measures for the classical case (see [18]). In
fact, let F (z) = z and assume that the critical point z∗ of E is contained
in intL(a) = (α, β). This implies that E attains its maximum on intL(a)
and it follows from Theorem 6 that the ergodic measure νz∗ is the unique
equilibrium measure for (F, a).

Example 2 (The analytic case). Let (Φ, a) be a Cr-regular pair with r = ω
and assume that F : intL(a) → R is real analytic. By hypothesis, the
function h : intL(a)→ R is analytic and so E : intL(a)→ R is also analytic.
Proceeding as in the proof of Corollary 4.19 in [14], one can show that the
function E has finitely many critical points, all of them in intL(a). It follows
from Theorem 6 that (F, a) has finitely many equilibrium measures.

Notice that in Theorem 11 we did not require E to attain its maximum
on intL(A). This is because we have the following property in the additive
setup.

Proposition 12. If the pair (Φ, A) is Cr-regular with r ≥ 2, then the func-
tion E = h+ F does not attain its maximum on ∂L(A).

Proof. Since, by hypothesis, the map Rd 3 q 7→ P (〈q, A〉) is strictly convex
(taking 0 ∈ intL(A), without loss of generality) and

h(z) = inf
q∈Rd

[P (〈q, A〉)− 〈q, z〉] for z ∈ L(A),

it follows from Theorem 26.3 in [24] that, in particular, ‖∇h(z)‖ → ∞ when
z → ∂L(A). Since h is concave, by the claim in the proof of Theorem 4.15
in [14], we guarantee that E cannot attain its maximum on ∂L(A). �

We note that in the almost additive setup we can only guarantee that the
function h is continuous on intL(A), and we do not know if the function
E = h+F attains its maximum on the boundary of L(A). We give a natural
example that addresses this issue.

Example 3. Let Λ be a locally maximal hyperbolic set for a C1 flow Φ =
(φt)t∈R. Moreover, let Es(x) and Eu(x) be the stable and unstable spaces
at x. We say that Φ has bounded distortion if there exist constants K1 > 0,
K2 > 0 and Hölder continuous functions bs, bu : Λ→ R such that

K1‖v‖ exp

∫ t

0
(bs ◦ φτ )(x) dτ ≤ ‖dxφtv‖ ≤ K2‖v‖ exp

∫ t

0
(bs ◦ φτ )(x) dτ
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for v ∈ Es(x), and

K1‖v‖ exp

∫ t

0
(bu ◦ φτ )(x) dτ ≤ ‖dxφtv‖ ≤ K2‖v‖ exp

∫ t

0
(bu ◦ φτ )(x) dτ

for v ∈ Eu(x). In this case one can easily verify that the families as = (ast )t≥0

and au = (aut )t≥0 given by

ast (x) = log ‖dxφt|Es(x)‖ and aut (x) = log ‖dxφt|Eu(x)‖

are almost additive with respect to Φ and satisfy

lim
t→∞

1

t

∥∥∥∥ast − ∫ t

0
(bs ◦ φτ ) dτ

∥∥∥∥
∞

= 0

and

lim
t→∞

1

t

∥∥∥∥aut − ∫ t

0
(bu ◦ φτ ) dτ

∥∥∥∥
∞

= 0.

Considering the families A = (as, au) and the functions B = (bs, bu), we have
L(A) = L(B) and Cz(A) = Cz(B). This implies that the entropy functions
hA : L(A)→ R and hB : L(B)→ R also coincide. Therefore, since E cannot
attain its maximal value on ∂L(B), because the pair (Φ, B) is Cω-regular,
it follows that E does not attain a maximum on ∂L(A).

Inspired by the former example, as well as by work in [17] and some open
problems formulated in [9], one can ask the following natural questions:

1. Given an almost additive family of continuous functions a = (at)t≥0

with respect to a continuous flow Φ = (φt)t∈R on a compact metric
space X, is there any continuous function b : X → R such that

lim
t→∞

1

t

∥∥∥∥at − ∫ t

0
(b ◦ φs)ds

∥∥∥∥
∞

= 0 ? (17)

2. When Φ|Λ is a hyperbolic flow and the family a has bounded variation,
is there any Hölder continuous function b : Λ→ R satisfying (17)?

Besides the problem of characterization of nonlinear equilibrium measures
as illustrated in Example 3, positive answers to these questions would be very
interesting for some extensions of thermodynamic formalism, multifractal
analysis and ergodic optimization for flows (see for example [9]).

6. Suspension flows

In this final section we consider briefly the particular case of suspension
flows. Let X be a compact metric space, T : X → X a homeomorphism and
τ : X → R+ a Lipschitz function. Consider the space

W =
{

(x, s) ∈ X × R : 0 ≤ s ≤ τ(x)
}

and let Y be the set obtained from W identifying (x, τ(x)) with (T (x), 0)
for each x ∈ X. Then a certain distance introduced by Bowen and Walters
in [13] makes Y a compact metric space. The suspension flow over T with
height function τ is the flow Ψ = (ψ)t∈R on Y with the maps ψt : Y → Y
defined by ψt(x, s) = (x, s+ t).
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Let µ be a T -invariant probability measure on X. One can show that µ
induces a Ψ-invariant probability measure ν on Y such that∫

Λ
g dν =

∫
X Ig dµ∫
X τ dµ

(18)

for any continuous function g : Y → R, where Ig(x) =
∫ τ(x)

0 (g ◦ ψs)(x) ds.
Conversely, any Ψ-invariant probability measure ν on Y is of this form for
some T -invariant probability measure µ on X. Abramov’s entropy formula
says that

hν(Ψ) =
hµ(T )∫
X τ dµ

. (19)

Now consider continuous functions a : Y → R and F : R→ R such that F is
nonlinear. It follows from (18) and (19) that

hµ(Ψ) + F

(∫
Y
a dµ

)
=

hν(T )∫
X τ dν

+ F

(∫
X Ia dν∫
X τ dν

)

=

hν(T ) +
(∫
X τ dν

)
F

(∫
X Ia dν∫
X τ dν

)
∫
X τ dν

=
hν(T ) +G

(∫
X τ dν,

∫
X Ia dν

)∫
X τ dν

for any probability measures ν and µ as above, where G : R+ × R → R is
the function given by

G(z1, z2) = z1F

(
z2

z1

)
.

Since τ > 0, it follows that PG(τ, Ia) = 0 if and only if PF (a) = 0,
where PG(τ, Ia) is the higher-dimensional nonlinear topological pressure for
(G, (τ, Ia)) with respect to T introduced in [6]. Hence, when PF (a) = 0
the invariant measure µ is an equilibrium measure for (F, a) if and only if
ν is an equilibrium measure for (G, (τ, Ia)). Assuming that the function
a : Y → R is Hölder continuous, it follows from Proposition 18 in [8] that
Ia : X → R is also Hölder continuous. Moreover, if PF (a) = 0 and the
map T : X → X is either a topologically mixing subshift of finite time,
a C1+ε expanding diffeomorphism or a C1+ε diffeomorphism with a locally
maximal hyperbolic set, one can apply former results for dynamical systems
with discrete time (see Theorem 7 in [6]).

The next example shows that given a continuous function F , we cannot
always guarantee that there exists a function a : X → R such that PF (a) = 0.

Example 4. Let Φ be a continuous flow on a compact metric space Y and
let F : R → R be a nonnegative continuous function. We assume that Φ
has positive topological entropy, entropy density of ergodic measures, and
that the map M 3 µ 7→ hµ(Φ) is upper-semicontinuous. Then there exists a
measure η ∈M with hη(Φ) = htop(Φ) > 0 such that

PF (a) = sup
µ∈M(Φ)

{
hµ(Φ) + F

(∫
Y
a dµ

)}
≥ hη(Φ) + F

(∫
Y
a dη

)
> 0

for any continuous a : Y → R.
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This example also shows, in general and in strong contrast to what hap-
pens in the classical setup, that even for suspension flows one cannot always
reduce the nonlinear thermodynamic formalism for continuous time to the
one for discrete time.

Finally, we give an example based on the Curie–Weiss model that provides
a setup in which we can use the discrete time setup to study the continuous
time problem.

Example 5. For X = {−1, 1}N, let T : X → X be the shift map and define
a function ϕ : X → R by ϕ(ω) = ω0, where ω = (ω0, ω1, . . .) ∈ X. We also
consider the function F : R→ R given by

F (z) =
β

2
z2, where β ≥ 0 is a physical parameter.

Now let τ = 1 and consider the suspension flow Ψ over T with height
function τ . It follows from [7] that there exists a function a : Y → R such
that Ia|X = ϕ. For instance, in this case one can define the function a by

a(ψt(ω)) = 12ϕ(ω)[t3 − 2t2 + t] for x ∈ X and t ∈ [0, 1].

Then

hµ(Ψ) + F

(∫
Y
a dµ

)
= hν(T ) + F

(∫
X
ϕdν

)
= hν(T ) +

β

2

(∫
X
ϕdν

)2

for every T -invariant probability measure ν on X, where µ is the induced
measure on Y . Therefore, PF (a) with respect to Ψ is equal to PF (ϕ) with
respect to T , and ν is an equilibrium measure for (F,ϕ) if and only if µ is
an equilibrium measure for (F, a). Hence, it follows from [15] that:

• for 0 ≤ β ≤ 1 there exists a unique equilibrium measure for (F, a);
• for β > 1 there exist two equilibrium measures for (F, a).
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