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Abstract

We explore notions of cohomology and obtain a kind of Livšic theo-
rem for nonadditive families of potentials. Together with the existence
of Gibbs states, we use this result to classify equilibrium measures for
almost additive families with respect to hyperbolic systems, improving
the nonadditive thermodynamic theory for flows. Moreover, building on
recent examples for discrete-time dynamics, we address some Hölder and
Bowen regularity problems for the physical equivalence relations between
additive and asymptotically additive families with respect to hyperbolic
symbolic flows and related dynamical systems.
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1 Introduction

This note is a natural continuation to [Hol24], and is mainly a contribution to
the study of relations between the additive classical world and the nonadditive
world of families of potentials, which started in [Cun20]. In particular, we are
interested in the asymptotically and almost additive cases with respect to flows.1

In this work, when considering families or sequences, the term potential is used
interchangeably with function. A family A = (at)t≥0 of functions at : X → R
is said to be asymptotically additive with respect to a flow Φ = (φt)t∈R on a
topological space X if for each ε > 0 there exists a function bε : X → R such
that

lim sup
t→∞

1

t

∥∥∥∥at − ∫ t

0

(bε ◦ φs)ds
∥∥∥∥
∞
≤ ε,

where ‖ · ‖∞ is the supremum norm on X. Moreover, A is said to be almost
additive with respect to Φ on X if there exists a constant C > 0 such that

−C + at + as ◦ φt ≤ at+s ≤ at + as ◦ φt + C

for every t, s ≥ 0. It is well known that every almost additive family is asymp-
totically additive [FH10]. For each function b : X → R, the additive family

(Stb)t≥0 generated by b (with respect to Φ) is denoted by Stb :=
∫ t

0
(b ◦ φs)ds.

It was showed in [Hol24] that, with respect to suspension flows Φ, asymptot-
ically additive families are physically equivalent to additive families of contin-
uous functions. That is, given an asymptotically additive family of continuous
functions A = (at)t≥0 (with respect to Φ) there exists a real-valued continuous
function b on the suspension manifold such that

lim
t→∞

1

t

∥∥at − Stb∥∥∞ = 0. (1)

In this case, we say that A is physically equivalent to (Stb)t≥0 (and vice-versa).
Motivated by this equivalence relation, one can naturally consider the problem
of studying the different levels of regularity that the physical equivalence (1)
can sustain. In our framework, the most relevant types of regularity are the
ones involving Bowen and Hölder functions together with families having the
bounded variation property (see Sections 2.1 and 2.2 for the definitions). In the
context of hyperbolic suspension flows and related hyperbolic setups, the space
of Hölder continuous functions is contained in the space of Bowen continuous
functions. Furthermore, by definition, an additive family generated by a Bowen
function has bounded variation with respect to any flow in general. Based on
this, we are interested in three types of regularity problems:

• Bowen regularity. Given any almost additive family of continuous func-
tions A = (at)t≥0 with respect to an hyperbolic suspension flow and hav-
ing bounded variation, is there a Bowen continuous function b such that
(Stb)t≥0 is physically equivalent to A ?

1This note is a shorter (slightly modified) version of part II, and the article [Hol24] is part I
of the longer unpublished manuscript [Hol23].
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• Uniform bound. Given any almost additive family of continuous func-
tions A = (at)t≥0 with respect to an hyperbolic suspension flow and having
bounded variation, is there a continuous function b such that

sup
t≥0

∥∥at − Stb∥∥∞ <∞ ?

• Hölder regularity. Given any almost additive family of Hölder contin-
uous functions A = (at)t≥0 with respect to an hyperbolic suspension flow
and having bounded variation, is there a Hölder continuous function b such
that (Stb)t≥0 is physically equivalent to A ?

Here hyperbolic symbolic flows are suspensions over the two-sided full shift.
These questions also can be posted with respect to hyperbolic flows or, more
generally, suspension flows over subshifts of finite type (see Section 4.4). The
uniform bound immediately implies Bowen regularity, and a positive answer to
the Hölder regularity question in this context also gives an affirmative answer
to the Bowen regularity one. All these regularity issues are also pertinent in
the more general case of asymptotically additive families. Moreover, defini-
tive answers to these questions can close the final gap in the comparison be-
tween additive and nonadditive families taking into consideration uniqueness of
equilibrium states (see [Fra77, BH21a]), ergodic optimization (see for example
[BHVZ21, HLMXZ19, MSV20]), and regularity of topological pressure together
with multifractal analysis (see [Rue78, BD04, BS00, PS01, BH21b, BH22c]).
It is important emphasizing that, considering the physical equivalence rela-
tions and associated problems, the passage of information from discrete-time
to continuous-time is not direct, and can actually be quite nuanced and tricky.
For instance, we recall here that the full physical equivalence problem for con-
tinuous flows in general is still open (see [Hol24]), despite already existing a
complete answer for continuous maps given by Cuneo in [Cun20].

In the first part of this work, we obtain a characterization result for almost
additive families with bounded variation (Theorem 3), which is intimately con-
nected to the three aforementioned regularity questions. This result is inspired
by the discrete-time counterpart obtained in [HS24] but, notwithstanding, it is
proved here directly in the realm of flows, and without using any of the phys-
ical equivalence results for discrete and continuous-time dynamical systems in
[Cun20] and [Hol24], respectively. Moreover, the characterization gives a setup
for which the uniform bound and the Bowen regularity problems are actually
equivalent (holding in particular for some types of suspensions and hyperbolic
flows), is linked to some deep results for linear cocycles, and also can be ap-
plied to classify equilibrium states for almost additive families based on their
cohomology classes, working as a nonadditive version of the classical Livšic the-
orem for flows ([Liv71, Liv72]), also complementing the nonadditive formalism
developed in [BH20, BH21a].

Building on some examples in [HS24], we show how to construct almost (and
asymptotically) additive families of Hölder continuous potentials satisfying the
bounded variation property with respect to some symbolic flows and which are
not physically equivalent to any additive family generated by a Hölder (Bowen)
continuous potential. These examples show that almost and asymptotically
additive families with bounded variation do not always have the same good
properties of Hölder continuous functions in hyperbolic and related frameworks.
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Even though we are relying on examples for maps, the constructions of the
counter-examples for the case of flows are rather involved and somewhat delicate,
requiring new tools and non-trivial modifications.

The paper is organized in three parts. In the first one, we study some dif-
ferent notions of cohomology for almost and asymptotically additive families,
we establish our nonadditive Livšic theorem for flows (Theorem 3), and show
how it can be applied to the context of linear cocycles over flows. In the second
part, we study and compare different notions of nonadditive Gibbs and weak
Gibbs states with respect to flows, give some examples of nonadditive families
derived by volume measures and measures satisfying the Gibbs property and,
as another application of Theorem 3, we demonstrate how to classify almost
additive families based on cohomology relations and equilibrium states. In the
last part, dealing with the regularity issues, we start giving a simple exam-
ple for which the uniform bound question can always be positively answered,
and another one for which the equivalences in Theorem 3 do not hold. In the
following, using the structure of suspension flows, we show how to build the
aforementioned counter-examples of almost additive families of potentials, giv-
ing a negative answer to the Hölder regularity problem. After proposing a way
of categorizing almost additive families with respect to hyperbolic and symbolic
flows, we show a construction demonstrating that the Bowen regularity problem
cannot be positively answered in the asymptotically additive case. We finish the
paper by quickly discussing some relevant technical matters, open problems and
further explorations.

2 On Cohomology

In this section we introduce some notions of cohomology, and obtain a char-
acterization of almost additive families of potentials. This allow us to classify
equilibrium states and study regularity equivalence issues for asymptotically
and almost additive families with respect to suspension flows and, in particular,
hyperbolic flows (see Sections 3 and 4).

2.1 Exploring notions for asymptotically additive families

Here, based on the physical equivalence in [Hol24] and inspired by concepts
recently studied in [HS24] for the discrete-time case, we introduce some, a priori,
distinct cohomology notions for asymptotically additive families with respect to
flows. We start recalling some concepts and tools in the additive framework.

We say that a function ψ : X → R is Walters (with respect to a flow Φ) if
for each ε > 0 there exists a δ > 0 such that for x, y ∈ X and t ≥ 0, we have
that

d(φs(x), φs(y)) < δ for every s ∈ [0, t] =⇒ |Stψ(x)− Stψ(y)| < ε.

In this case, we also say that the additive family (Stψ)t≥0 satisfies the Walters
property. Moreover, we say that a function ξ : X → R is Bowen (with respect
to Φ) if there exist L > 0 and δ > 0 such that for x, y ∈ X and t ≥ 0, we have
that

d(φs(x), φs(y)) < δ for every s ∈ [0, t] =⇒ |Stξ(x)− Stξ(y)| ≤ L.
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Clearly every Walters function is also Bowen. In the hyperbolic framework, the
Hölder continuous functions are always Walters and, consequently, Bowen (see
Proposition 7.3.1 in [FH20]).

A continuous flow Φ on a compact metric space X is said to satisfy the
Closing Lemma if for every ε > 0 there exists δ > 0 such that if x ∈ X and t ≥ 0
satisfying d(φt(x), x) < δ, then there exists a periodic orbit {φs(y) : 0 ≤ s ≤ T}
with |T − t| < ε such that d(φs(x), φs(y)) < ε for all 0 ≤ s ≤ t (see for example
Theorems 5.3.11 and 6.2.4 in [FH20]).

Let us recall the notion of cohomology for functions with respect to flows.
A continuous function a : X → R is said to be Φ-cohomologous to zero if there
exists a continuous function q : X → R such that

a(x) = lim
t→0

q(φt(x))− q(x)

t
for every x ∈ X.

We say that a point x ∈ X has a forward dense orbit if {φs(x) : s ≥ 0} = X.
When {φs(x) : s ∈ R} = X, we say that x ∈ X has a dense orbit. We say that
a flow is topologically transitive if there exists at least one point with a forward
dense orbit.

The next result is a slightly more general version of the celebrated Livšic
theorem for flows ([Liv72]).

Theorem 1. Let Φ = (φt)t∈R be a topologically transitive continuous flow sat-
isfying the Closing Lemma, and a : X → R a continuous function satisfying
the Walters property. Then a is cohomologous to zero if and only if for every
periodic point x = φT (x) we have STa(x) = 0.

Proof. See, for example, the proof of Theorem 5.3.23 in [FH20].

Based on Theorem 1, we also obtain a simple characterization of additive
families generated by coboundaries. Let M(Φ) be the set of Φ-invariant proba-
bility measures on X.

Proposition 2. Under the conditions of Theorem 1, a function a : X → R is
Φ-cohomologous to zero if and only if

lim
t→∞

1

t

∥∥Sta∥∥∞ = 0.

In particular,

lim
t→∞

1

t

∥∥Sta∥∥∞ = 0 if and only if sup
t≥0

∥∥Sta∥∥∞ <∞.

Proof. Suppose a is Φ-cohomologous to zero. This implies the existence of a con-
tinuous function q : X → R such that Sta = q◦φt−q for all t ≥ 0. Consequently,
one has ‖Sta‖∞ ≤ 2‖q‖∞ <∞ for every t ≥ 0. Then, limt→∞

1
t ‖Sta‖∞ = 0.

Conversely, let limn→∞
1
t ‖Sta‖∞ = 0. The Lebesgue’s dominated conver-

gence theorem gives that

0 =

∫
X

lim
n→∞

1

t
Sta dµ =

∫
X

a dµ for all µ ∈M(Φ). (2)

For all x ∈ X with x = φT (x), the measure (
∫ T

0
δφs(x)ds)/T is Φ-invariant. In

particular, identity (2) gives that STa(x) = 0 for all x ∈ X with x = φT (x).
Hence, by Theorem 1 we conclude that a is Φ-cohomologous to zero.
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Now based on Theorem 1 in [Hol24] and Proposition 2, we propose our first
definition of cohomology for asymptotically additive families.

Definition 1. We say that an asymptotically (or almost) additive family of
continuous functions A = (at)t≥0 is Φ-cohomologous to a constant if there exists
a continuous function a : X → R which is Φ-cohomologous to some constant and
satisfies

lim
t→∞

1

t

∥∥at − Sta∥∥∞ = 0.

One can easily check that a family A = (at)t≥0 is Φ-cohomologous to a con-
stant if and only if the sequence (an/n)n∈N is uniformly convergent to a constant.
In particular, A is Φ-cohomologous to zero if and only if limt→∞

1
t ‖at‖∞ = 0.

Remark 1. Observe that the classical concept of cohomology for a function is
much stronger than the one introduced for nonadditive families in Definition 1.

Proposition 2 also motivates a new definition for the nonadditive case, which
is still weaker than the classical one but stronger than Definition 1.

Definition 2. An asymptotically (or almost) additive family of continuous func-
tions A = (at)t≥0 is Φ-cohomologous to a constant if there exists a continuous
function a : X → R which is Φ-cohomologous to a constant and satisfies

sup
n∈N

∥∥at − Sta∥∥∞ <∞.

In this case, observe that A is uniformly bounded if and only if A is Φ-
cohomologous to zero.

2.2 An almost additive Livšic theorem for flows

We say that a family of functions A = (at)t≥0 has bounded variation or satisfies
the bounded variation property (with respect to a flow Φ = (φt)t∈R) if there
exists ε > 0 such that

sup
t≥0

sup
{
|at(x)− at(y)| : dt(x, y) < ε

}
<∞,

where dt(x, y) = max{d(φs(x), φs(y)) : s ∈ [0, t]}. It is clear that if a function
φ is Bowen, then the additive family (Stφ)t≥0 has bounded variation.

Following closely the property in the additive setup, we say that a family
of functions A = (at)t≥0 satisfies the Walters property if for each κ > 0 there
exists ε > 0 such that for x, y ∈ X and t ≥ 0, we have that

d(φs(x), φs(y)) < ε for every s ∈ [0, t] =⇒ |at(x)− at(y)| < κ.

Clearly every family satisfying the Walters property also has bounded variation.
The next result is our main theorem in this section.

Theorem 3. Let Φ = (φt)t≥0 be a topologically transitive continuous flow on a
compact metric space X and satisfying the Closing Lemma. Let B = (bt)t≥0 be
an almost additive family of continuous functions with respect to Φ and satisfying
the bounded variation property. Then, the following properties are equivalent:
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1. limt→∞ ‖bt‖∞/t = 0.

2. supt≥0 ‖bt‖∞ <∞.

3. There exists K > 0 such that |bt(p)| ≤ K for all p ∈ X and t ≥ 0 with
φt(p) = p.

Remark 2. Comparing Theorem 3 with the classical Livšic result (Theorem 1),
we notice that the Walters property is required in the last but not in the former.
This happens because, as it turns out, the nonadditive notions of cohomology
(Definitions 1 and 2) are weaker than the notion of cohomolgy for functions (see
also Theorem 8 for the connections with equilibrium states and periodic points).

As a direct consequence, we have:

Corollary 4. Under the hypotheses of Theorem 3, let A = (at)t≥0 be an almost
additive family of continuous functions with bounded variation. Then, for a
continuous function a : X → R such that (Sta)t≥0 has bounded variation, we
have

lim
t→∞

1

t

∥∥at − Sta∥∥∞ = 0 if and only if sup
t≥0

∥∥at − Sta∥∥∞ <∞.

In particular, if (Sta)t≥0 does not have bounded variation we have

sup
t≥0

∥∥at − Sta∥∥∞ =∞.

Corollary 4 readily implies that the Bowen regularity problem is equivalent
to the uniform bound problem for topologically transitive flows satisfying the
Closing Lemma. We also note that Theorem 3 is an extension of Proposition 2
to the case of almost additive families of functions.

Proof of Theorem 3. We start with a key auxiliary lemma.

Lemma 1. Let Φ = (φt)t∈R be a continuous flow on a compact metric space X
and let C = (ct)t≥0 be an almost additive family of continuous functions with
uniform constant C > 0 and such that limt→∞ ‖ct‖∞/t = 0. Then:

1. For every τ -periodic point x0 ∈ X, we have supq∈N |cqτ (x0)| ≤ C.

2. For each periodic point x0 ∈ X, there exists a constant L := L(τ) ≥ 0
(only depending on the period of x0) such that supt≥0 |ct(x0)| ≤ L.

3. We have

sup
µ∈M(Φ)

∣∣∣∣ ∫
X

ctdµ

∣∣∣∣ ≤ C for all t ≥ 0.

Proof of the lemma. Since the family C is almost additive with uniform
constant C > 0, one can see that

p−1∑
k=0

ct ◦ φkt − (p− 1)C ≤ cpt ≤
p−1∑
k=0

ct ◦ φkt + (p− 1)C (3)
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for all t ≥ 0 and p ∈ N. Now suppose x0 is a τ -periodic point, that is, φτ (x0) =
x0. If t = qτ for some q ∈ N, then

φkt(x0) = φkqτ (x0) = (φτ ◦ φτ ◦ · · · ◦ φτ )︸ ︷︷ ︸
kq times

(x0) = x0

for all k ∈ N. In particular, this implies that

lim
p→∞

1

p

p−1∑
k=0

ct(φkt(x0)) = ct(x0). (4)

Since limt→∞ ‖ct‖∞/t = 0, it follows from (3) and (4) that

− C ≤ ct(x0) = cqτ (x0) ≤ C. (5)

By the arbitrariness of q ∈ N, item 1 follows.
Let’s prove item 2. Let x0 be a τ -periodic point, consider t = qτ + r with

r ∈ (0, τ) and fix the numbers

A(τ) := inf

{
inf
x∈X

cs(x) : s ∈ [0, τ ]

}
and B(τ) := sup

{
sup
x∈X

cs(x) : s ∈ [0, τ ]

}
.

(6)
Almost additivity together with (5) and (6) gives that

−2C +A(τ) ≤ −C + cqt(x0) + cr(φqτ (x0)) ≤ ct(x0)

and
ct(x0) ≤ cqt(x0) + cr(φqτ (x0)) + C ≤ 2C +B(τ).

Hence,

L1(τ) := min
{
A(τ)− 2C,−C

}
≤ ct(x0) ≤ max

{
B(τ) + 2C,C

}
:= L2(τ)

for all t ≥ 0. Taking L = L(τ) := max{|L1(τ)|, |L2(τ)|}, the item 2 is proved.
Now we prove item 3. Suppose µ is a Φ-invariant measure. Then, in particu-

lar, µ is also φt-invariant for every t ≥ 0. By applying that limt→∞ ‖ct‖∞/t = 0
in the inequalities (3), we get

−C ≤
∫
X

lim
p→∞

1

p

p−1∑
k=0

ct(φkt(x))dµ(x) =

∫
X

ctdµ ≤ C

for all t ≥ 0. Since the measure µ ∈M(Φ) is arbitrary, item 3 is proved.

Let’s proceed with the proof of the theorem. Since B satisfies the bounded
variation property, there exists ε > 0 such that

Q := sup
t≥0

sup
{∣∣bt(x)− bt(y)

∣∣ : dt(x, y) < ε
}
<∞. (7)

We first show that 3 implies 2. Suppose that there exists a uniform constant
K > 0 such that |bt(p)| ≤ K for all p ∈ X and t ≥ 0 with φt(p) = p. Since Φ is
topologically transitive, there exists a point z ∈ X with a dense forward orbit.
Now let δ > 0 be the number given by the Closing Lemma. By the density
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x

z

φt(x)

φs(z) φτ (x)

φ∆(z,δ)(z)

Figure 1: Approximating the orbit of any point by a finite piece of a dense orbit.

of the forward orbit, there exists a number ∆(z, δ) ∈ R such that for each
x ∈ X and t ∈ R there exists some s ∈ [0,∆(z, δ)] with d(φt(x), φs(z)) < δ (see
Figure 1). For t > ∆(z, δ), in particular, there exists s′ ∈ [0,∆(z, δ)] such that
d(φt(z), φs′(z)) < δ, which is the same as d(φt−s′(φs′(z)), φs′(z)) < δ. By the
Closing Lemma, there exists p ∈ X satisfying φT (p) = p, with |T−t+s′| < ε and
such that dt−s′(φs′(z), p) < ε. From almost additivity, there exists a uniform
constant L = L(ε) > 0 such that ‖bT − bt−s′‖∞ ≤ L. By the bounded variation
property (7), we have ∣∣bt−s′(φs′(z))− bt−s′(p)∣∣ ≤ Q,
which implies |bt−s′(φs′(z)| ≤ Q + |bt−s′(p)| ≤ Q + |bT (p)| + L ≤ Q + K + L.
Applying almost additivity again, we get∣∣bt(z)∣∣ =

∣∣b(t−s′)+s′(z)∣∣ ≤ ∣∣bs′(z)∣∣+
∣∣bt−s′(φs′(z))∣∣+ C

≤ sup
s∈[0,∆(z,δ)]

∣∣bs(z)∣∣+Q+K + L+ C =: K̃.

Since the time t > ∆(z, δ) was arbitrarily chosen, we conclude that |bt(z)| ≤ K̃
for all t ≥ 0. Notice that the constant K̃ > 0 only depends on z, δ > 0 and
ε > 0. By using the almost additivity property one more time, we have∣∣bt(φs(z)∣∣ ≤ ∣∣bs(z)∣∣+

∣∣bt+s(z)∣∣+ C ≤ 2K̃ + C for all t, s ≥ 0.

Now consider any point x ∈ X. Since {φt(z) : t ≥ 0} = X, there exists a
sequence of points (zq)q≥1 ⊂ {φt(z) : t ≥ 0} such that limq→∞ zq = x. Since
each function bt : X → R is continuous, we finally obtain∣∣bt(x)

∣∣ = lim
q→∞

∣∣bt(zq)∣∣ ≤ 2K̃ + C.

Hence, by the arbitrariness of x, we have supt≥0 ‖bt‖∞ ≤ 2K̃ + C < ∞, which
is item 2. Obviously item 2 implies item 1. Moreover, it follows from Lemma 1
that item 1 implies item 3, and the theorem follows.

Remark 3. Theorem 3 is no longer valid in the asymptotically additive nor
the subadditive framework in general. In fact, let Φ be any continuous flow
on a compact metric space X and consider the family A = (at)t≥0 given by
at(x) =

√
t for all t ≥ 0 and x ∈ X. Clearly A is asymptotically additive,
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subadditive and satisfies the bounded variation property with respect to Φ.
Moreover, one can check that limt→∞ ‖at‖∞/t = 0 but supt≥0 ‖at‖∞ = ∞,
confirming that Theorem 3 has the optimal nonadditive framework, in the sense
that it does not work for other bigger classes of families. Furthermore, the
example above also indicates that Definitions 1 and 2 are not equivalent for
asymptotically additive families in general.

2.3 A connection to linear cocycles

In this section, for the sake of clarity, we give some definitions and notions
following closely [BH21b]. Let Φ = (φt)t∈R be a continuous flow on a compact
metric space M . Moreover, let GL(d,R) be the set of all invertible d×d matrices.
A continuous map A : R×M → GL(d,R) is called a linear cocycle over Φ if for
all t, s ∈ R and x ∈M we have:

1. A(0, x) = Id.

2. A(t+ s, x) = A(s, φt(x))A(t, x).

We shall always assume that all entries aij(t, x) of A(t, x) are positive for every
(t, x) ∈ R×M . Moreover, we consider the norm on GL(d,R) defined by ‖B‖ =∑d
i,j=1 |bij |, where bij are the entries of the matrix B.
Now we consider the family of continuous functions Ac = (at)t≥0 given by

at(x) = log
∥∥A(t, x)

∥∥ for all t ≥ 0 and x ∈M .

By Proposition 12 in [BH21b], Ac is almost additive with respect to Φ. We note
that for a general linear cocycle, the family Ac is only subadditive.

We say that a cocycle A has bounded distortion if

sup
{∥∥A(t, x)A(t, y)−1

∥∥ : z ∈M and x, y ∈ Bt(z, ε)
}
<∞

for some ε > 0.
Notice that ∥∥A(t, x)A(t, x)−1

∥∥ =
∥∥Id
∥∥ = d

for every (t, x) ∈ R×M , which implies that∥∥A(t, x)−1
∥∥ ≥ d∥∥A(t, x)

∥∥−1
.

Thus,∥∥A(t, x)A(t, y)−1
∥∥ ≥ K

d

∥∥A(t, x)
∥∥ · ∥∥A(t, y)−1

∥∥ ≥ K∥∥A(t, x)
∥∥ · ∥∥A(t, y)

∥∥−1

for some uniform constant K > 0, and so∣∣ log
∥∥A(t, x)

∥∥− log
∥∥A(t, y)

∥∥∣∣ ≤ − logK + log
∥∥A(t, x)A(t, y)−1

∥∥.
In particular, we have

sup
x,y∈Bt(z,ε)

∣∣at(x)− at(y)
∣∣ ≤ − logK + log sup

x,y∈Bt(z,ε)

∥∥A(t, x)A(t, y)−1
∥∥
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for z ∈M and ε > 0. Hence, if A has bounded distortion, then Ac has bounded
variation.

For a concrete example, one can consider a C1 flow Φ on a compact set
M ⊂ Rd such that for every t ∈ R and x ∈M the matrix dxφt has only positive
entries. Thus A(t, x) = dxφt is a linear cocycle over Φ and the family Ad =
(at)t≥0 given by at(x) = log ‖dxφt‖ is an almost additive family of continuous
functions with respect to Φ.

Let GL+(d,R) ⊂ GL(d,R) be the set of all matrices with strictly posi-
tive entries. We have the following application of Theorem 3 to the case of
continuous-time cocycles.

Theorem 5. Let Φ = (φt)t∈R be a topologically transitive continuous flow on
a compact metric space M satisfying the Closing Lemma, and let A : R×M →
GL+(d,R) be a linear cocycle over Φ with bounded distortion. Suppose there
exists a compact set Ω ⊂ GL+(d,R) such that A(t, p) ⊂ Ω for all t ≥ 0 and

p ∈M with φt(p) = p. Then there exists a compact set Ω̃ such that A(t, x) ⊂ Ω̃
for all t ≥ 0 and x ∈M .

Proof. By the hypotheses, the family of continuous functions Ac = (at)t≥0 given
by at(x) = log ‖A(t, x)‖ is almost additive with respect to Φ. Moreover, since
the cocycle A has bounded distortion, Ac has bounded variation. Now suppose
that there is a compact Ω ⊂ GL+(d,R) such that A(t, p) ⊂ Ω for all t ≥ 0 and
p ∈ M with φt(p) = p. Since the map A(t, p) 7→ log ‖A(t, p)‖ is continuous,
there exists a constant K > 0 such that |at(p)| ≤ K for all t ≥ 0 and all p ∈M
with φt(p) = p. By Theorem 3, there exists K̃ > 0 such that supt≥0 ‖at‖∞ ≤ K̃.

In particular, we get e−K̃ ≤ ‖A(t, x)‖ ≤ eK̃ for all t ≥ 0 and all x ∈M . Hence,
we finally obtain∥∥A(t, x)− Id

∥∥ ≤ ∥∥A(t, x)
∥∥+

∥∥Id
∥∥ ≤ eK̃ + d for all t ≥ 0 and x ∈M,

concluding the proof.

Remark 4. Theorem 5 is a particular continuous-time counterpart of a deep
result by Kalinin ([Kal11, Theorem 1.2]), where a uniform bound on the periodic
data guarantees a uniform bound on the entire phase space (see also related
results in [Wal99, LZ22]).

3 Nonadditive notions of (weak) Gibbs states

In this section we compare and reconcile some notions of Gibbs states for non-
additive families of functions and obtain a classification of equilibrium measures
with respect to hyperbolic flows. We also consider families of functions derived
from measures and related to Gibbs properties, which play a relevant role in
our framework of Bowen regularity problems arising from physical equivalence
relations (Section 4.3).

Let us recall some ingredients of the nonadditive thermodynamic formalism
for flows. Given an almost additive family of functions A = (at)t≥0 (satisfying
mild assumptions) with respect to a continuous flow Φ on a compact metric
space X, we have the variational principle (see [BH21a])

PΦ(A) = sup
µ∈M(Φ)

{
hµ(Φ) + lim

t→∞

1

t

∫
X

at dµ

}
, (8)

11



where PΦ(A) is the nonadditive topological pressure of A with respect to Φ in-
troduced in [BH20]. Moreover, a measure ν ∈ M(Φ) is an equilibrium measure
or an equilibrium state for A (with respect to Φ) if

PΦ(A) = hν(Φ) + lim
t→+∞

1

t

∫
X

at dν.

Now we briefly recall the notions of suspension and hyperbolic flows, together
with some useful properties. Let T : X → X be a homeomorphism of a compact
metric space X and let τ : X → R be a strictly positive continuous function.
Consider the space

W =
{

(x, s) ∈ X × R : 0 ≤ s ≤ τ(x)
}
,

and let Y be the set obtained from W identifying (x, τ(x)) with (T (x), 0) for each
x ∈ X. Then a certain distance introduced by Bowen and Walters in [BW72]
makes Y a compact metric space. The suspension flow over T with height
function τ is the flow Φ = (φt)t∈R on Y with the maps φt : Y → Y defined by
φt(x, s) = (x, s + t). When T is not invertible, we say that Φ is a suspension
semi-flow on Y .

Let µ be a T -invariant probability measure on X. One can show that µ
induces a Φ-invariant probability measure ν on Y such that∫

Y

g dν =

∫
X
Ig dµ∫

X
τ dµ

(9)

for any continuous function g : Y → R, where Ig(x) =
∫ τ(x)

0
(g ◦ φs)(x) ds. Con-

versely, any Φ-invariant probability measure ν on Y is of this form for some
T -invariant probability measure µ on X. Abramov’s entropy formula says that

hν(Φ) =
hµ(T )∫
X
τ dµ

. (10)

By (9) and (10) we obtain

hν(Φ) +

∫
Y

g dν =
hµ(T ) +

∫
X
Ig dµ∫

X
τ dµ

. (11)

Since τ > 0, it follows from (11) that

PΦ(g) = 0 if and only if PT (Ig) = 0,

where PΦ(g) is the classical topological pressure of g with respect to Φ on Y and
PT (Ig) is the classical topological pressure of Ig with respect to T on X. When
PΦ(g) = 0, ν is an equilibrium measure for g if and only if µ is an equilibrium
measure for Ig.

By the seminal works of Bowen [Bow73] and Ratner [Rat73], any locally
maximal hyperbolic set for a C1 flow on a Riemmanian manifold has Markov
partitions of arbitrarily small diameter. Based on this, one can see that these
systems inherit the same good structure of a suspension flow over a symbolic
map and with a Hölder continuous height function.

Let X be a compact metric space. A map S : X → X is said to have
bounded distortion if for each Hölder continuous function ξ : X → R there exists

12



a constant D > 0 such that if x, y ∈ X, n ∈ N and d(T k(x), T k(y)) < ε for all
k ∈ {0, . . . , n− 1}, then∣∣∣∣ n−1∑

k=0

ξ(Sk(x))−
n−1∑
k=0

ξ(Sk(y))

∣∣∣∣ < Dε.

The full shift, subshifts of finite type, uniformly expanding and hyperbolic maps
all have bounded distortion (see [Wal78, Bou02]).

The variational principle (8) and the notion of equilibrium states also hold
for asymptotically additive families with respect to suspension flows, including
locally maximal hyperbolic sets for C1 flows (see Section 3 in [Hol24]).

Now consider Φ = (φt)t∈R the suspension semi-flow over a continuous map
T : X → X satisfying the bounded distortion property and with Hölder con-
tinuous height function τ . Proposition 19 in [BS00] guarantees that for each
sufficiently small ε > 0 there exists a constant κ > 0 such that

BYτm(x)(φs(x), ε) ⊂ BXm(x, κε)× (s− κε, s+ κε), (12)

BXm(x, ε/κ)× (s− ε/κ, s+ ε/κ) ⊂ BYτm(x)(φs(x), ε) (13)

for every x ∈ X, 0 < s < τm(x) and m ∈ N, where BYt (y, δ) and BXn (x, δ)
denote, respectively, the Bowen ball with respect to the flow Φ on Y and the
Bowen ball with respect to the map T on X, and

τn(x) =

n−1∑
k=0

τ(T k(x)) for all x ∈ X.

Let A = (at)t≥0 be a family of almost additive continuous functions with
respect to Φ. Following as in the proof of Lemma 3.1 in [BH21a], the sequence
C = (cn)n∈N given by cn(x) = aτn(x)(x) is almost additive with respect to
T . Now consider µ a Gibbs measure for the sequence C on X and let ν be
the measure on Y induced by µ (see identity (9)). (For the almost additive
thermodynamics with respect to maps, proper definitions of Gibbs and weak-
Gibbs measures for sequences, see [Bar06, Mum06] and the review [Bar10]). In
particular, ν = (µ × λ)/(

∫
X
τ dµ), where λ is the Lebesgue measure on R. By

the Gibbs property of µ, for any sufficiently small ε > 0 there exist K1(ε) > 0
and K2(ε) > 0 such that

K1(ε)−1 exp
[
−mPT (C) + cm(x)

]
≤ µ(BXm(x, κε))

≤ K1(ε) exp
[
−mPT (C) + cm(x)

]
,

(14)

K2(ε)−1 exp
[
−mPT (C) + cm(x)

]
≤ µ(BXm(x, ε/κ))

≤ K2(ε) exp
[
−mPT (C) + cm(x)

] (15)

for all x ∈ X and m ∈ N. By identity (11) and the definition of τm, we get(
1

sup τ

)
PT (C) ≤ PΦ(A) ≤

(
1

inf τ

)
PT (C) and m inf τ ≤ τm(x) ≤ m sup τ.

Moreover, one can check that for all t > 0 there exists m ∈ N such that τm(x) ≤
t ≤ τm+1(x) with t− τm(x) ∈ [0, sup τ ], which clearly gives that∣∣at(x)− aτm(x)(x)

∣∣ ≤ sup
s∈[0,sup τ ]

‖as‖∞ =: q.

13



It follows from (12) and (14) that

ν(BYt (φs(x), ε)) ≤ ν(BYτm(x)(φs(x), ε))

≤ 2κεK1(ε)

inf τ
exp

[
− τm(x)PΦ(A) + aτm(x)(x)

]
≤ 2κεK1(ε)

inf τ
exp

[
(sup τ)PΦ(A) + q

]︸ ︷︷ ︸
=: L1

exp
[
− tPΦ(A) + at(x)

]
=

2κεL1K1(ε)

inf τ
exp

[
− tPΦ(A) + at(x)

]
for all x ∈ X and s ∈ [0, τ(x)]. The almost additivity of the family A readilly
implies that

|at(x)− at(φs(x))| ≤ 2 sup
s∈[0,sup τ ]

‖as‖∞ := q̃.

Since for each y ∈ Y there exist x ∈ X and s ∈ [0, sup τ ] such that y = φs(x),
we finally obtain

ν(BYt (y, ε)) ≤ 2κεK1(ε)eq̃

inf τ
exp

[
−tPΦ(A)+at(y)

]
= K̃1(ε) exp

[
−tPΦ(A)+at(y)

]
for all y ∈ Y and t > 0, where K̃1(ε) := (2εL1K1(ε)eq̃)/ inf τ only depends on
ε > 0 and the function τ > 0. Similarly, the identities (13) and (15) guarantee

the existence of a constant K̃2(ε) > 0 such that

ν(BYt (y, ε)) ≥ K̃2(ε) exp
[
− tPΦ(A) + at(y)

]
for all y ∈ Y and t > 0.

Therefore, we conclude that Gibbs measures for almost additive sequences on
the base space induce the Gibbs property for almost additive families with re-
spect to the suspension semi-flow. Analogously, one can show that weak Gibbs
measures for the asymptotically additive sequence on the base induce measures
that satisfy the weak Gibbs property for the asymptotically additive family with
respect to the suspension semi-flow. These relations involving (weak) Gibbs
properties between the map on base space and the flow also hold for suspen-
sion flows over maps having the bounded distortion2. In particular, by the
existence of Markov partitions (see [Bow73, Rat73]), this framework includes
locally maximal hyperbolic sets for topologically mixing C1 flows.

Motivated by this, we have the following definitions.

Definition 3. Let Φ be a continuous flow on a compact metric space X. We
say that a measure µ on X (not necessarily Φ-invariant) is a Gibbs measure
or a Gibbs state for an asymptotically additive family of continuous functions
A = (at)t≥0 (with respect to Φ) if for any sufficiently small ε > 0 there exists a
constant K(ε) ≥ 1 such that

K(ε)−1 ≤ µ(Bt(x, ε))

exp
[
− tPΦ(A) + at(x)

] ≤ K(ε)

for all x ∈ X and t > 0.
2In [BH21a], the authors considered hyperbolic flows and, via Markov partitions, defined

the Gibbs property only on the base space. Here, we showed that the definition on the base
space implies the, a priori, more general definition directly for the flow space (Definition 3).
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Definition 4. Let Φ be a continuous flow on a compact metric space X. We say
that a measure µ on X (not necessarily Φ-invariant) is a weak Gibbs measure or
a weak Gibbs state for an asymptotically additive family of continuous functions
A = (at)t≥0 (with respect to Φ) if for any sufficiently small ε > 0 there exists
a sequence of numbers (Kt(ε))t>0 ⊂ [1,∞) with limt→∞ logKt(ε)/t = 0 such
that

Kt(ε)
−1 ≤ µ(Bt(x, ε))

exp
[
− tPΦ(A) + at(x)

] ≤ Kt(ε)

for all x ∈ X and t > 0.

Remark 5. For hyperbolic flows and suspension flows over subshifts of finite
type, uniformly expanding or hyperbolic maps in general, Definition 3 is a gen-
eralization of the classical notion of Gibbs measures to the nonadditive setup
(see for example Definition 4.3.25 in [FH20]).

The following result guarantees the existence of Gibbs states for almost
additive families of functions with respect to hyperbolic flows.

Proposition 6 ([BH21a, Theorem 3.5]). Let Λ be a locally maximal hyperbolic
set for a topologically mixing C1 flow Φ and let A be an almost additive family
of continuous functions on Λ with bounded variation. Then:

1. There exists a unique equilibrium measure for A.

2. There exists a unique Φ-invariant Gibbs measures for A.

3. The two measures are equal and are ergodic.

Remark 6. The Gibbs state in Proposition 6 was obtained using the definition
on the base space (see Section 3.3 in [BH21a]). As we saw above, this implies
that the induced Φ-invariant measure satisfies the Gibbs property as in Defini-
tion 3. Proposition 6 also holds for appropriate versions of suspension flows over
subshifts of finite type, uniformly expanding or hyperbolic maps with Hölder
continuous height functions. On the other hand, for asymptotically additive
families under the hypotheses of Proposition 6, we cannot guarantee uniqueness
of equilibrium states. In these cases, the measures lifted from the base space
are only guaranteed to be weak Gibbs (in the sense of Definition 4).

3.1 Some nonadditive families derived from (weak) Gibbs
states and other measures

Many natural examples of nonadditive families were given in [Hol24]. Here, we
also bring other relevant sources of almost and asymptotically additive families
of functions.

If a measure η on a compact metric space X is Gibbs for some almost additive
family of continuous functions with respect to a flow Φ = (φt)t∈R on X, then
for any sufficiently small δ > 0 there exists a constant K(δ) > 1 such that

1

K(δ)
≤ η(Bt+s(x, δ))

η(Bt(x, δ))η(Bs(φt(x), δ))
≤ K(δ) for all x ∈ X and t, s > 0.

In particular, for each δ > 0, the family of functions Aδ = (aδt )t≥0 given by
aδt (x) = log η(Bt(x, δ)) is almost additive (defining aδ0 ≡ 0). Since every family
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admitting a Gibbs measure has bounded variation, it clearly follows that Aδ

also satisfies the bounded variation property. We observe that the functions
aδt : X → R are not necessarily continuous. In fact, using the Gibbs property of
η, one can only guarantee the existence of constants K1(δ) ≥ K2(δ) > 0 such
that

K2(δ) + lim sup
x→x0

aδt (x) ≤ aδt (x0) ≤ K1(δ) + lim inf
x→x0

aδt (x)

for all x0 ∈ X and all t ≥ 0. In particular, the functions x 7→ aδt (x) are upper
semicontinuous.

Proposition 7. Let Φ be a continuous flow on a compact metric space X, and
let ν be a measure on X. Then:

1. If for some δ > 0 there exist constants A(δ) ≥ B(δ) > 0 and an almost
additive family of continuous functions G = (gt)t≥0 such that

B(δ)egt(x) ≤ ν(Bt(x, δ)) ≤ A(δ)egt(x) for all x ∈ X and t ≥ 0,

then there exists an almost additive family of Hölder continuous functions
H = (ht)t≥0 satisfying

sup
t≥0

sup
x∈X

∣∣ log ν(Bt(x, δ))− ht(x)
∣∣ <∞.

2. If for some δ > 0 there exist sequences of numbers (Ct(δ))t≥0, (Dt(δ))t≥0 ⊂
[1,∞) such that logCt(δ)/t → 0, logDt(δ)/t → 0 and an asymptotically
additive family of continuous functions F = (ft)t≥0 such that

Dt(δ)e
ft(x) ≤ ν(Bt(x, δ)) ≤ Ct(δ)eft(x) for all x ∈ X and t ≥ 0,

then there exists an asymptotically additive family of Hölder continuous
functions J = (jt)t≥0 satisfying

lim
t→∞

1

t
sup
x∈X

∣∣ log ν(Bt(x, δ))− jt(x)
∣∣ = 0.

Proof. Since the space of Hölder continuous functions is dense in the space
of continuous functions on compact spaces, we can guarantee the existence of
families H = (ht)t≥0 and J = (jt)t≥0 of Hölder continuous functions such that
supx∈X |gt(x)− ht(x)| ≤ 1 and supx∈X |ft(x)− jt(x)| ≤ 1 for all t ≥ 0. Clearly
H is almost additive and J is asymptotically additive with respect to Φ.

Example 1. Gibbs measures satisfy the conditions of item 1, and weak Gibbs
measures satisfy the conditions of item 2 in Proposition 7. This means that,
modulo physical equivalences, the families generated by them are almost and
asymptotically additive families of Hölder continuous functions, respectively.

Now let M be a compact Riemannian manifold and Λ ⊂M a hyperbolic set
for a topologically mixing C1 flow Φ. For each t > 0, consider the continuous
function Jt : Λ → R given by Jt(x) = − log ‖dxφt|Eu(x)‖, where Eu(x) is the
unstable vector space at x. Since x 7→ Eu(x) is Hölder continuous, we also have
that each function x 7→ Jt(x) is Hölder. Now let λ be the Lebesgue measure
on M . Assuming that Φ is C2, the Volume Lemma ([FH20, Proposition 7.4.3])
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says that for any sufficiently small δ > 0 there exist constants Cδ, Dδ > 0 such
that

DδJt(x) ≤ λ(Bt(x, δ)) ≤ CδJt(x) for all x ∈ Λ and t ≥ 0.

Moreover, one can check that the family (Jt)t≥0 is additive with respect Φ. In
this case, the measure λ satisfies the conditions of the first item in Proposition 7.
Hence, the family Lebδ = (Lebδt )t≥0 given by Lebδt (x) = log λ(Bt(x, δ)) is almost
additive with bounded variation and physically equivalent to an almost additive
family of Hölder continuous functions. Actually, in this particular case, Lebδ is
physically equivalent to the additive family (Jt)t≥0.

3.2 Classification of nonadditive equilibrium states

In this section we apply Theorem 3 to see how we can compare families with
the same equilibrium measures, only based on the information provided by the
periodic data of the system.

Theorem 8. Let Λ be a locally maximal hyperbolic set for a topologically mixing
C1 flow Φ = (φt)t≥0, and let A = (at)t≥0 and B = (bt)t≥0 be two almost additive
families of continuous functions with bounded variation. Then A and B have
the same equilibrium measure if and only if there exists a constant K > 0 such
that ∣∣at(p)− bt(p)− t(PΦ(A)− PΦ(B))

∣∣ ≤ K
for all p ∈ Λ and t ≥ 0 with φt(p) = p.

Proof. Suppose that |at(p)− bt(p)− t(PΦ(A)− PΦ(B))| ≤ K for all p ∈ Λ and
t ≥ 0 with φt(p) = p. It follows from Theorem 3 that

sup
t≥0

sup
x∈Λ

∣∣at(x)− bt(x)− t(PΦ(A)− PΦ(B))
∣∣ <∞. (16)

Now consider the almost additive family D = (dt)t≥0 given by dt := bt +
t(PΦ(A)− PΦ(B)). By (16), the family (at − dt)/t converges uniformly to zero
on Λ. Togehter with the definition of nonadditive topological pressure, we have

PΦ(A) = PΦ(D) and lim
t→∞

1

t

∫
Λ

at dν = lim
t→∞

1

t

∫
Λ

dt dν for all ν ∈M(Φ),

showing that A and D have the same equilibrium measures. Moreover, since
PΦ(D) = PΦ(B) + (PΦ(A)− PΦ(B)) and

sup
µ∈M(Φ)

(
hµ(Φ) + lim

t→∞

1

t

∫
Λ

dt dµ

)
= sup
µ∈M(Φ)

(
hµ(Φ) + lim

t→∞

1

t

∫
Λ

bt dµ

)
+ PΦ(A)− PΦ(B),

D and B also share the same equilibrium measures. Hence, we conclude that A

and B also have the same equilibrium measures.
Let’s prove the converse. By Proposition 6, A and B admit unique equilib-

rium measures, each one of them satisfying the Gibbs property with respect to
Φ. Now, by hypothesis, suppose these equilibrium states are the same unique
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measure η ∈ M(Φ). The Gibbs property says that, for each sufficiently small
ε > 0, there exist constants K1(ε) ≥ 1 and K2(ε) ≥ 1 such that

K1(ε)−1 ≤ η(Bt(x, ε))

exp
[
− tPΦ(A) + at(x)

] ≤ K1(ε),

K2(ε)−1 ≤ η(Bt(x, ε))

exp
[
− tPΦ(B) + bt(x)

] ≤ K2(ε)

for all x ∈ Λ and t ≥ 0. This readily gives

K1(ε)−1K2(ε)−1 ≤ exp
[
at(x)− bt(x)− t(PΦ(A)− PΦ(B))

]
≤ K1(ε)K2(ε)

for all x ∈ Λ and t ≥ 0, which implies

sup
x∈Λ

∣∣at(x)− bt(x)− t(PΦ(A)− PΦ(B))
∣∣ ≤ log(K1(ε)K2(ε)) for all t ≥ 0.

In particular, we obtain |at(p)− bt(p)− t(PΦ(A)− PΦ(B))| ≤ log(K1(ε)K2(ε))
for all p ∈ Λ and t ≥ 0 with φt(p) = p, and the result follows.

Together with Theorem 3, Theorem 8 shows that two almost additive families
with bounded variation share the same unique equilibrium state if and only if
they are cohomologous to each other (modulo a uniform constant) in the sense of
Definitions 1 and 2. In this scenario, Theorem 8 is the nonadditive version of the
classical classification theorem for hyperbolic flows (see for example Theorem
7.3.24 in [FH20]).

4 On Regularity

Let us now consider the regularity problems involving the physical equivalence
relations of asymptotically and almost additive families. We start investigating
some natural simple examples in non hyperbolic setups. We also address the
regularity issues for frameworks related to systems with hyperbolic behavior.

4.1 Linear flows on the flat torus

One of the main ingredients in the proof of Theorem 3 is the simultaneous
existence of periodic and transitive points. A reasonable point then, is to ask
what would happen in a system with no periodic points or no transitive data.
In this regard, the most natural examples seem to be linear flows on compact
spaces. In this direction, let us start with an example of a setup where the
periodic data is everywhere and with the same period.

Example 2. Let Tn = Rn/Zn be the n-torus and consider α = (α1, . . . , αn) ∈
Rn to be linear dependent, that is, there exist (not all zero) kj ∈ Z such that∑n
j=1 kjαj = 0. The linear flow Φα = (φt)t∈R on Tn in the direction α is

defined by φt(x) = x+ tα (mod 1). Letting A = (at)t≥0 be an almost additive
family of continuous functions with respect to Φα, Theorem 1 and Example 1 in
[Hol24] guarantee the existence of a continuous function b : Tn → R such that
limt→∞ ‖at − Stb‖∞/t = 0, where ‖ · ‖∞ is the supremum norm on Tn. Since
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Φα is a periodic flow, by Lemma 1 there exists a constant L > 0 (depending
only on the period) such that

sup
t≥0

∥∥at − Stb∥∥∞ ≤ L.
In this case, the uniform bound exists even if the family A does not satisfy
the bounded variation property. Moreover, it is clear that the additive family
(Stb)t≥0 has bounded variation if and only if A also has it.

We now check what happens in the opposite extreme: transitive systems
without periodic points.

Example 3. Let Tn = Rn/Zn be the n-torus and let α = (α1, . . . , αn) ∈ Rn
be linear independent. In this case, the linear flow Φα = (φt)t∈R on Tn in the
direction α given by φt(x) = x+ tα (mod 1) is minimal, that is, every orbit is
dense in Tn. Now let A = (at)t≥0 be any almost (or asymptotically) additive
family of continuous functions. In particular, letting ν be the Lebesgue measure
on Tn and b : Tn → R the continuous function given by the physical equivalence
relation ([Hol24, Theorem 1]), we have

lim
t→∞

1

t

∥∥∥∥at− t∫
Tn

b dν

∥∥∥∥
∞
≤ lim
t→∞

1

t

∥∥at−Stb∥∥∞+ lim
t→∞

1

t

∥∥∥∥Stb− t∫
Tn

b dν

∥∥∥∥
∞

= 0.

This means that the function b can by replaced by the constant
∫
Tn b dν, which

always satisfies the bounded variation property. On the other hand, the clas-
sical Gottshalk and Hedlund theorem for flows (see for example Theorem C in
[McC99]), guarantees that supt≥0 ‖Stg − t

∫
Tn gdν‖∞ = ∞ for every continu-

ous function g : Tn → R not Φα-cohomologous to a constant. Therefore, for
these types of linear flows, Theorem 3 fails even in the additive case assuming
functions with any strong regularity.

Remark 7. Example 2 does not satisfy the hypotheses of Theorem 3. However,
all the equivalences there are satisfied, even without asking for the bounded
variation property of the families. In the opposite direction, Example 3 also
does not satisfy the hypotheses of Theorem 3 but the uniform bound cannot be
obtained, even asking for any type of regularity on the families of potentials.

In the next couple of sections, we treat the regularity issues in setups with
hyperbolic behavior. These are natural and richer scenarios for investigating
Hölder regularity and the bounded variation property (Bowen regularity).

4.2 Hölder regularity

We show how to construct almost and asymptotically additive families of Hölder
continuous functions satisfying the bounded variation property but not physi-
cally equivalent to any additive family generated by a Hölder continuous func-
tion. Our approach is based on the following result for symbolic systems, which
extends the examples in [HS24].

Here the set of symbols Σ is assumed to be finite.

Theorem 9. Let σ : ΣZ → ΣZ be the two-sided shift map. Then:
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1. There exists an almost additive sequence of continuous functions with re-
spect to σ satisfying the bounded variation property and which is not physi-
cally equivalent to any additive sequence generated by a Hölder continuous
function.

2. There exist almost additive sequences of Hölder continuous functions with
respect to σ satisfying the bounded variation property and which are not
physically equivalent to any additive sequence generated by a Hölder con-
tinuous function.

Proof. Let σL : ΣN → ΣN be the left-sided full shift. Fix β > 1 and define
s = s(ω, ω̃) on ΣN × ΣN as the smallest positive number s such that ωs 6= ω̃s.
In this case, we consider the distance on ΣN to be dL(ω, ω̃) = β−s(ω,ω̃) if ω 6= ω̃
and dL(ω, ω̃) = 0 if ω = ω̃. Similarly, we define q = q(ω, ω′) on ΣZ × ΣZ as
the smallest positive number q such that ω−q 6= ω′−q or ωq 6= ω′q. From this, we

consider the distance on ΣZ as d(ω, ω′) = β−q(ω,ω
′) if ω 6= ω′ and d(ω, ω′) = 0 if

ω = ω′.
Now let F = (fn)n∈N be any almost additive sequence of continuous functions

on ΣN with respect to σL, satisfying the bounded variation property and not
physically equivalent to any additive sequence generated by a Hölder continuous
function (for example, the sequence generated by the quasi-Bernoulli measure
in Theorem 11 in [HS24]). Consider the canonical projection π : ΣZ → ΣN given
by

ω = (· · ·ω−2ω−1ω0, ω1ω2 · · · ) 7−→ π(ω) = (ω1ω2ω3 · · · ),
and let G = (gn)n∈ be the sequence on ΣZ given by gn = fn ◦ π. Since we have
dL(π(ω), π(ω′)) ≤ d(ω, ω′) for all ω, ω′ ∈ ΣZ, gn is continuous for each n ∈ N.
By the relation (σL ◦π)(ω) = (π ◦σ)(ω) for all ω ∈ ΣZ, one can easily see that G
is almost additive with respect to σ. Moreover, since F has bounded variation,
we get

sup
n∈N

{
|gn(ω)− gn(ω̃)| : ω, ω̃ ∈ Ci1...in

}
≤ sup
n∈N

{
|fn(π(ω))− fn(π(ω̃))| : π(ω), π(ω̃) ∈ Ci1...in ∩ ΣN} <∞,

where Ci1...in is the cylinder set

Ci1...in =
{

(j1j2 · · · ) ∈ ΣN : j1 = i1, . . . , jn = in
}
.

That is, G also satisfies the bounded variation property. Now suppose that
φ : ΣZ → R is a Hölder continuous function such that G is phisically equivalent
to (Snφ)n∈N with respect to σ. Lemma 1.6 in [Bow75a] (see also Section 3 in
[Sin72]) guarantees the existence of a Hölder continuous function ψ : ΣZ → R
cohomologous to φ and such that ψ(· · ·ω−2ω−1ω0ω1ω2 · · · ) = ψ(ω1ω2 · · · ). That
is, ψ ◦ π = ψ and there exists a continuous function v : ΣZ → R satisfying
φ− ψ = v ◦ σ − v. Thus, for every ω ∈ ΣZ, we obtain∣∣∣∣gn(ω)−

n−1∑
k=0

(φ ◦ σk)(ω)

∣∣∣∣ =

∣∣∣∣fn(π(ω))−
n−1∑
k=0

(ψ ◦ π ◦ σk)(ω) + v − v ◦ σn
∣∣∣∣

≥
∣∣∣∣fn(π(ω))−

n−1∑
k=0

(ψ ◦ σkL)(π(ω))

∣∣∣∣− 2‖v‖∞.
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Since π(ΣZ) = ΣN and G is physically equivalent to (Snφ)n∈N, we have

lim
n→∞

1

n
sup
ω′∈ΣN

∣∣∣∣fn(ω′)−
n−1∑
k=0

(ψ ◦ σkL)(ω′)

∣∣∣∣
≤ lim
n→∞

1

n
sup
ω∈ΣZ

∣∣∣∣gn(ω)−
n−1∑
k=0

(φ ◦ σk)(ω)

∣∣∣∣ = 0,

which is a contradiction. Therefore, G is not physically equivalent to any additive
sequence generated by a Hölder continuous function, and item 1 is proved.

Let us prove the second item. Consider the same sequence G and take any
real number γ > 0. By the density of Hölder functions on the space of contin-
uous functions on ΣZ, for each n ∈ N there exists a Hölder continuous function
hγn : ΣZ → R such that ‖gn − hγn‖∞ ≤ γ. Since G has bounded variation, the
sequence Hγ = (hγn)n∈N also satisfies the bounded variation property. Further-
more, it is clear that Hγ is also almost additive with respect to σ. Since, in
particular, G and Hγ are physically equivalent, Hγ is not physically equivalent
to any additive sequence generated by a Hölder function. The result follows
now by the arbitrariness of γ ∈ R+.

Now we show how we can pass some relevant information from discrete to
continuous-time systems. First, a simple auxiliary result.

Lemma 2. Let X be a compact metric space. Every almost additive sequence of
continuous functions Q = (qn)n∈N with respect to a continuous map T : X → X
satisfies

sup
n∈N

∥∥qn ◦ T − qn∥∥∞ <∞.

Proof. Since Q is almost additive, there exists a constant K > 0 such that

−K + q1(x) + qn−1(T (x)) ≤ qn(x) ≤ qn−1(T (x)) + q1(x) +K

for every x ∈ X and every n ∈ N. From this, we get∣∣qn(x)− qn−1(T (x))
∣∣ ≤ K + ‖q1‖∞ =: K1 <∞. (17)

On the other hand, we also have

−K + q1(Tn−1x) + qn−1(x) ≤ qn(x) ≤ qn−1(x) + q1(Tn−1x) +K,

which gives ∣∣qn(x)− qn−1(x)
∣∣ ≤ K1 (18)

for every x ∈ X and every n ∈ N. It follows from (17) and (18) that∣∣qn(T (x))− qn(x)
∣∣ ≤ ∣∣qn(f(x))− qn+1(x)

∣∣+
∣∣qn+1(x)− qn(x)

∣∣ ≤ 2K1

for every x ∈ X and every n ∈ N, as desired.

Lemma 3. Let Φ = (φt)t∈R be a suspension flow on Y over a continuous
invertible map T : X → X with continuous height function τ : X → (0,∞). Let
C = (cn)n∈N be an almost additive sequence of continuous functions with respect
to T on X and satisfying the bounded variation property. Then, there exists an
almost additive family of continuous functions A = (at)t≥0 with respect to Φ on
Y , satisfying the bounded variation property and such that an(x) = cn(x) for all
x ∈ X and n ∈ N. The same result holds for the asymptotically additive case.
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Proof. Consider the function b·c : R→ Z given by bxc = max{m ∈ Z : m ≤ x}.
Now for each t > 0 define the function at : Y → R as

at(y) = at(φs(x)) = abtc(φs(x)) = cbtc(x) and a0 = c0 := 0. (19)

For the sake of simplicity, let us consider a constant height function τ = 1.
Notice that by construction, φ1 = T on X. In addition, the sequence (an)n∈N
is almost additive with respect to φ1 on Y . In fact, by (19) and the almost
additivity of C on X, for all y ∈ Y and m,n ∈ N we have

am+n(y) = am+n(φs(x)) = cm+n(x) ≤ cm(x) + cn(Tm(x)) + C

= am(φs(x)) + an(φm1 (x)) + C

= am(y) + (an ◦ φs ◦ φm1 )(x) + C

= am(y) + an(φm1 (φs(x))) + C

= am(y) + an(φm1 (y)) + C.

Proceeding in the same manner, we also have am+n(y) ≥ am(y)+an(φm1 (y))−C
for all y ∈ Y and m,n ∈ N, and (an)n∈N is indeed almost additive with respect
to φ1 on Y .

Let us now show that the family A is almost additive with respect to the
flow Φ on Y . By the almost additivity of (an)n∈N with respect to φ1 on Y , for
each y ∈ Y , m ≤ t < m+ 1 and n ≤ s < n+ 1, we obtain

at+s(y) = am+n(y) ≤ am(y) + an(φm(y)) + C = at(y) + as(φm(y)) + C

= at(y) + as(φt(y)) +
[
an(φm(y))− an(φt(y))

]
+ C.

(20)

On the other hand, letting y = φs(x) for some x ∈ X and r ∈ [0, 1) and m = t+u
with u ∈ [0, 1), we also have∣∣an(φm)(y)− an(φt(y))

∣∣ =
∣∣an(φm(φr(x)))− an(φt(φr(x)))

∣∣
=
∣∣an(φr(φm(x)))− an(φu+r(φm(x)))

∣∣
≤
∣∣cn(φm(x))− cn(φ1(φm(x)))

∣∣. (21)

Since C is almost additive with respect to φ1 on X, Lemma 2 guarantees the
existence of a uniform constant K > 0 such that

sup
n∈N

sup
x∈X

∣∣cn(φm(x))− cn(φ1(φm(x)))
∣∣ ≤ K.

Together with (21), this implies that |an(φm)(y)−an(φt(y))| ≤ K for all m,n ∈
N, t > 0 and y ∈ Y . Hence, it follows now from (20) that

at+s(y) ≤ at(y) + as(φt(y)) +K + C for all y ∈ Y and t, s ≥ 0.

The other inequality can be obtained in a similar way, and we conclude that A

is almost additive with respect to Φ on Y .
Now let dX be any metric on the base space X and consider the Bowen-

Walters distance dY on Y ([BW72]). By the continuity of each cn : X → R, it
is clear that the function at : Y → R is continuous for each t ≥ 0.

Let’s show that A also has bounded variation with respect to Φ on Y . Take
two arbitrary points y, z ∈ Y such that dY (φτ (y), φτ (z)) < ε for τ ∈ [0, t] with
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m ≤ t < m+1. Writing y = φu(x) and z = φr(x
′) for x, x′ ∈ X and u, r ∈ [0, 1),

we have ∣∣at(y)− at(z)
∣∣ =

∣∣at(φu(x))− at(φr(x′))
∣∣ =

∣∣cm(x)− cm(x′)
∣∣ (22)

In particular, we get

dX(x, x′) ≤ dY (y, z) < ε,

dX(φ1(x), φ1(x′)) ≤ dY (φu(φ1(x)), φr(φ1(x′))) = dY (φ1(y), φ1(z)) < ε,

...

dX(φm−1(x), φm−1(x′)) ≤ dY (φu(φm−1(x)), φr(φm−1(x′)))

= dY (φm−1(y), φm−1(z)) < ε.

(23)

Since the sequence C has bounded variation with respect to T = φ1 on X, there
exists a constant L = L(ε) > 0 such that |cm(x)− cm(x′)| ≤ L. Thus, it follows
from (22) that the family A on Y also have bounded variation with respect to
Φ, and with the same parameters ε, L as the sequence C on X.

For the general case where τ is any positive continuous function, we have
T (x) = φτ(x)(x) and Tm(x) = φτm(x)(x) for all m ∈ N and x ∈ X, with

τm =
∑m−1
k=0 τ ◦ T . In this case, for each t ≥ 0, we define at : Y → R as

at(y) = at(φs(x)) := aτn(x)(φs(x)) := cn(x) and a0 = c0 := 0. (24)

Making the necessary modifications and proceeding as in the case with τ = 1,
one can see that A is almost additive with respect to Φ on Y . The continuity of
each cm : X → R together with definition (24), directly implies that at : Y → R
is continuous for each t ≥ 0. Moreover, since C has bounded variation with
respect to T on X, the same relation between the distance on X and the Bowen-
Walters distance on Y as in (23), guarantees the bounded variation property
for A with respect to Φ on Y .

Now suppose that D = (dn)n∈N is asymptotically additive with respect to
T , and consider again the family A = (at)t≥0 defined in (24) now with cn = dn
for all n ∈ N. By the asymptotic additivity of D, given any ε > 0 there exists a
continuous function hε : X → R such that

lim sup
n→∞

1

n
sup
x∈X

∣∣∣∣dn(x)−
n−1∑
k=0

(hε ◦ T )(x)

∣∣∣∣ < ε. (25)

By Lemma 2 in [Hol24], there exists a continuous function gε : Y → R such that
Igε |X = hε. By the definition of A, for each y = φu(x) with u ∈ [0, sup τ) and
τn(x) ≤ t < τn+1(x), we have∣∣∣∣at(y)−

∫ t

0

(gε ◦ φs)(y)ds

∣∣∣∣ =

∣∣∣∣at(φu(x))−
∫ t+u

u

(gε ◦ φs)(x)ds

∣∣∣∣
≤
∣∣∣∣dn(x)−

n−1∑
k=0

(hε ◦ T k)(x)

∣∣∣∣+ sup τ sup gε + suphε.

Since n → ∞ implies t → ∞, we conclude from (25) that A is asymptotically
additive with respect to Φ on Y . The continuity and the bounded variation
property of A follow from the same arguments presented in the almost additive
case.
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Suspension flows over two-sided subshifts of finite type with Hölder continu-
ous height functions are also called hyperbolic symbolic flows (see [FH20]). One
can check that additive families generated by Hölder continuous functions sat-
isfy the bounded variation property with respect to hyperbolic symbolic flows,
and Proposition 6 also holds for these types of flows. On the other hand, it is not
hard to find asymptotically additive families having bounded variation with re-
spect to an hyperbolic symbolic flow, but admitting more than one equilibrium
state.

The following result is a continuous-time counterpart of Theorem 9, and
gives a negative answer to the Hölder regularity problem.

Theorem 10. Let Φ = (φt)t∈R be a suspension flow over the two-sided shift
map σ : ΣZ → ΣZ and with a Hölder continuous height function τ : ΣZ → (0,∞).
Then:

1. There exist almost additive families of Hölder continuous functions with
respect to Φ, satisfying the bounded variation property and not physically
equivalent to any additive family generated by a Hölder continuous func-
tion.

2. There exist asymptotically additive families of Hölder continuous functions
with respect to Φ, satisfying the bounded variation property, admitting a
unique equilibrium state but not physically equivalent to any additive family
generated by a Hölder continuous function.

Proof. Let C = (cn)n∈N be any sequence given by Theorem 9, that is, C is
almost additive with respect to σ, has bounded variation and is not physically
equivalent to any additive sequence generated by a Hölder continuous function.
By Lemma 3 there exists an almost additive family of continuous functions
A = (at)t≥0 with respect to Φ on Y , with bounded variation and such that
an(x) = cn(x) for all x ∈ ΣZ and n ∈ N. Suppose that

lim
t→∞

1

t
sup
y∈Y

∣∣∣∣at(y)−
∫ t

0

(b ◦ φs)(y)ds

∣∣∣∣ = 0, where b : Y → R is Hölder.

In particular, we have

lim
t→∞

1

t
sup
x∈ΣZ

∣∣∣∣at(x)−
∫ t

0

(b ◦ φs)(x)ds

∣∣∣∣ = 0. (26)

By the proof of Lemma 15 in [BH21b], for each t > 0 there exists a unique
n ∈ N with t = τn(x) + κ for some κ ∈ [0, sup τ ] such that∣∣∣∣ ∫ t

0

(b ◦ φs)(x)ds−
n−1∑
k=0

(Ib ◦ σk)(x)

∣∣∣∣ ≤ sup b sup τ,

where Ib(x) =
∫ τ(x)

0
(b ◦ φs)(x)ds. Thus, it follows from (26) that

lim
n→∞

1

n
sup
x∈ΣZ

∣∣∣∣cn(x)−
n−1∑
k=0

(Ib◦σk)(x)

∣∣∣∣ = lim
n→∞

1

n
sup
x∈ΣZ

∣∣∣∣an(x)−
∫ n

0

(b◦φs)(x)ds

∣∣∣∣ = 0.
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Since b : Y → R is Hölder, the function Ib : X → R is also Hölder ([BS00,
Proposition 18]). Hence, C is physically equivalent to the additive sequence
generated by Ib, which is a contradiction.

Now fix a number γ > 0. By the density of Hölder functions on the space of
continuous functions, for each t ≥ 0 there exists a Hölder continuous function
bγt : Y → R such that supy∈Y |b

γ
t (y) − at(y)| ≤ γ. It is clear that the family

Bγ := (bγt )t≥0 is almost additive and satisfy the bounded variation property
with respect to the flow Φ on Y . Moreover, since in particular Bγ is physically
equivalent to A, it is obvious that the family Bγ cannot be physically equivalent
to any additive family generated by a Hölder continuous function, as desired.

Now let us prove the second item. It was showed in [HS24] the existence of
asymptotically additive sequences of continuous functions D = (dn)n∈N with re-
spect to the left-sided shift map σL : ΣN → ΣN, satisfying the bounded variation
property, with a unique equilibrium measure, but not physically equivalent to
any additive sequence generated by a Hölder continuous function. Proceeding
as in the proof of Theorem 9, one also can assume that D is asymptotically
additive with respect to the two-sided shift map σ : ΣZ → ΣZ. By Lemma 3,
following as in the proof of the last item, we can guarantee the existence of an
asymptotically additive family of Hölder continuous functions A with respect to
Φ on Y , having bounded variation but not physically equivalent to any additive
family generated by a Hölder function. Moreover, it is clear from the identity
(11) that A also admits a unique equilibrium measure on Y , which is induced
by the unique equilibrium measure for D on the base space ΣZ.

Remark 8. These counter-examples show that the physical equivalence [Hol24,
Theorem 1] does not always allow us to reduce the study of asymptotically addi-
tive families with bounded variation to the case of single functions with Hölder
regularity. Since the thermodynamic and multifractal formalisms are well un-
derstood for the case of Hölder continuous potentials in hyperbolic setups, The-
orem 10 also shows, as in the case of maps, a significant barrier regarding the
exchange of information between the additive, almost additive and asymptoti-
cally additive worlds with respect to continuous-time systems.

4.3 Bowen regularity and a proposed classification of al-
most additive families

In this section, taking into consideration Theorem 3, we address the issues re-
lated to bounded variation and Bowen regularity of additive, almost and asymp-
totically additive families. In our approach here, equilibrium states satisfying
the Gibbs property play a crucial role.

Theorem 11. Let Φ = (φt)t∈R be a suspension flow over the two-sided shift map
σ : ΣZ → ΣZ and with a Hölder continuous height function τ : ΣZ → (0,∞). Let
A = (at)t≥0 be an almost additive family of continuous functions with respect
to Φ on Y , and having bounded variation. Then the following properties are
equivalent:

1. The equilibrium measure for A satisfies the Gibbs property for a continuous
Bowen function.
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2. There exists a continuous Bowen function b : Y → R such that

lim
t→∞

1

t
sup
y∈Y

∣∣at(y)− Stb(y)
∣∣ = 0.

3. There exists a continuous Bowen function b : Y → R such that

sup
t≥0

sup
y∈Y

∣∣at(y)− Stb(y)
∣∣ <∞.

Proof. We start showing that 1 implies 3. By an appropriate version of Proposi-
tion 6 for hyperbolic symbolic flows, A has a unique equilibrium state ν, which
satisfies the Gibbs property (now in the sense of Definition 3). By hypoth-
esis, ν is also Gibbs for some continuous Bowen function b : Y → R. Then,
for some sufficiently small δ > 0, there exist constants K1 = K1(δ) ≥ 1 and
K2 = K2(δ) ≥ 1 such that

K−1
1 ≤ ν(Bt(y, δ))

exp
[
− tPΦ(A) + at(y)

] ≤ K1, (27)

K−1
2 ≤ ν(Bt(y, δ))

exp
[
− tPΦ(b) + Stb(y)

] ≤ K2 (28)

for all y ∈ Y and t ≥ 0, where PΦ(b) is the classical topological pressure of b

with respect to Φ. Taking the new function b̃ := b + PΦ(b) − PΦ(A), by (27)

and (28) we clearly have |at(y) − Stb̃(y)| ≤ logK1K2 for all y ∈ Y and t ≥ 0.

Since b̃ is also a continuous Bowen function, item 3 is proved.
Now suppose 3 holds, that is, there exist a uniform constant K3 > 0 and a

continuous Bowen function b such that |at(y)− Stb(y)| ≤ K3 for all y ∈ Y and
t ≥ 0. In this case, PΦ(A) = PΦ(b). Moreover, by the Gibbs property for A in
(27), we obtain

(K1e
K3)−1 = K−1

1 e−K3 ≤ ν(Bt(y, δ))

exp
[
− tPΦ(b) + Stb(y)

] ≤ K1e
K3

for all y ∈ Y and t ≥ 0, which is item 1.
Finally, since every hyperbolic symbolic flow is topologically transitive ([FH20,

Proposition 1.6.30]) and satisfy the Closing Lemma ([KH12, Corollary 18.1.8]),
it follows from Corollary 4 that items 2 and 3 are equivalent, and the theorem
is proved.

For the case of hyperbolic symbolic flows or locally maximal hyperbolic sets
for C1 topologically mixing flows, it is not hard to see that an almost addi-
tive family satisfies the bounded variation property if and only if it admits a
Gibbs state. In Theorem 11, the equivalence between items 1 and 2 indicates
a possible way of classifying almost additive families with bounded variation
with respect to hyperbolic symbolic flows or locally maximal hyperbolic sets for
C1 topologically mixing flows. Then, we propose the following classification of
almost additive families:

• Type 1: Almost additive families with bounded variation and admitting
a Gibbs state for a Bowen continuous function.
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• Type 2: Almost additive families with bounded variation but not admit-
ting Gibbs states for Bowen continuous functions.

• Type 3: Almost additive families without bounded variation but having
a unique equilibrium state.

• Type 4: Almost additive families having more than one equilibrium state.

Remark 9. One can construct families of types 1, 3 and 4 ([HS24]). On the
other hand, examples of type 2 seem to be much more complicated to produce
or they actually don’t exist. In the discrete-time framework, the existence of
sequences of type 2 is connected with the problem of showing that every quasi-
Bernoulli measure is a Gibbs state for some Bowen function (see also [Cun20]).

Asymptotically additive families. Now we show how to treat the Bowen
regularity problem for asymptotically additive families. Let G = (gn)n∈N be
an asymptotically additive sequence of continuous functions with respect to
σ : ΣZ → ΣZ, having bounded variation, with a unique equilibrium measure, but
not physically equivalent to any additive sequence generated by a Bowen func-
tion. By Lemma 3, there exists an asymptotically additive family A = (at)t≥0

with respect to the hyperbolic symbolic flow Φ on Y (with height function τ)
and such that an(x) = gn(x) for all x ∈ ΣZ and n ∈ N. Now suppose the
existence of a continuous Bowen function b : Y → R such that A is physically
equivalent to (Stb)t≥0. By the appropriate versions of Lemmas 3.1 and 3.3
in [BH21a] for hyperbolic symbolic flows, the sequence C = (cn)n∈N given by

cn(x) =
∫ τn(x)

0
(b ◦ φs)(x)ds is additive and satisfy the bounded variation prop-

erty with respect to σ. By the physical equivalence relation between A and
(Stb)t≥0, we have in particular that

lim
n→∞

1

n
sup
x∈ΣZ

∣∣∣∣gn(x)− cn(x)

∣∣∣∣ = lim
n→∞

1

n
sup
x∈ΣZ

∣∣∣∣an(x)− cn(x)

∣∣∣∣
≤ lim
t→∞

1

t
sup
y∈Y

∣∣at(y)− Stb(y)
∣∣ = 0.

(29)

Since, by the proof of Lemma 15 in [BH21b], cn(x) =
∑n−1
k=0 Ib ◦ σk(x) =:

SnIb(x) for all x ∈ ΣZ and all n ∈ N, the sequence (SnIb)n∈N has bounded
variation. Hence, it follows from (29) that G is physically equivalent to the
additive sequence (SnIb)n∈N generated by the Bowen function Ib : ΣZ → R.
This is a contradiction. Therefore, by construction, A has bounded variation
and admits a unique equilibrium state (with respect to Φ on Y ), but cannot be
physically equivalent to any additive family generated by a Bowen continuous
function.

4.4 Concluding remarks

Observe that all the results in the regularity sections are developed for hyper-
bolic symbolic flows. There is a deeper reason for that, which comes all the
way from [BKM20]. In this last work, studying almost additivity in the context
of planar matrix cocycles, the authors showed an example of a quasi-Bernoulli
measure that is not Gibbs for any Hölder continuous function with respect to
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the left-sided full shift map ([BKM20, Example 2.10 (2)]). In view of the non-
additive versions of the Livšic theorem for maps and flows (Theorem 5 in [HS24]
and Theorem 3, respectively), this particular example plays a fundamental role
in the production of the counter-examples in [HS24] for the left-sided full shift
map and, consequently, the ones in Theorem 10 for symbolic flows.

Based on this, morally speaking, all the counter-examples and results dis-
cussed here in the regularity section can be adapted to the case of hyperbolic
flows and, more generally, to suspension flows over topologically mixing sub-
shifts of finite type. To achieve this, one needs to obtain appropriate versions of
Theorems 2.8 and 2.9 in [BKM20] for topologically mixing Markov chains using
the classical thermodynamic machinery developed in [Bow75a].

Finally, let us mention the still open problem of the existence of sequences
and families of type 2. A reasonable starting point to attack this question is to
understand how the aforementioned theorems in [BKM20] could accommodate
Bowen continuous functions, going beyond the Hölder regularity previously con-
sidered by them. A positive answer in this direction would finally reveal the
existence of quasi-Bernoulli measures that do not satisfy the Gibbs property for
any continuous function, consequently giving examples of sequences of type 2
with respect to the full shift of finite type. Based on this, by our constructions
in this note, we could as well give examples of families of type 2 with respect to
hyperbolic symbolic flows and hyperbolic flows (via Markov partitions).

Acknowledgments: The author was partially supported by NSF of China,
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