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Abstract. We obtain nonlinear conditional variational principles for families
of continuous potentials, with and without uniqueness of equilibrium states.

This includes discussing the connection with the topological pressure, giving

a detailed analysis of nonlinear level sets, and providing information on full
measures. We apply our results in particular to describe the relation between

the dimension spectrum and the classical topological pressure, to study the

dimension of sets of nontypical points with respect to nonlinear perturbations
of Birkhoff’s averages and some multiple ergodic averages, and to provide a

better understanding of intermediate dimension properties for maps with some

hyperbolic behavior.
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1. Introduction

Our work is a further contribution to the (mathematical) thermodynamic formal-
ism and multifractal analysis, with emphasis on the study of nonlinear conditional
variational principles and their applications. The notion of topological pressure,
which is the starting point for the thermodynamic formalism, was introduced in
the 1970’s by Ruelle in [33] for expansive maps and then by Walters in [37] in full
generality. Since then the theory was developed profusely, and has many applica-
tions. The developments include a variational principle for the Kolmogorov–Sinai
entropy, and the study of the existence and uniqueness of equilibrium and Gibbs
measures, with emphasis on hyperbolic dynamics, among many other properties.
There are applications of the thermodynamic formalism for example to dimension
theory of dynamical systems and a rigorous development of multifractal analysis,
again with emphasis on hyperbolic dynamics, and to statistical physics. There are
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also several extensions of the thermodynamic formalism. These include the non-
additive thermodynamic formalism, which was used to obtain dimension estimates
for some classes of invariant sets, the subadditive thermodynamic formalism and
its generalized variational principle with applications to entropy spectra, and the
almost additive thermodynamic formalism with consequences for the construction
of weak Gibbs measures on nonconformal repellers. We refer the reader to the
books [1, 10, 24, 25, 29, 30, 34, 39] for the description of these and many further
developments.

In this work, we are interested in extending and unifying some topics of multi-
fractal analysis by using what is usually called the thermodynamic approach. The
main aim of our work is bringing together the thermodynamic formalism and the
nonlinear flavor of multifractal analysis. The later was initiated long ago, although
rather intermittently. This includes for example the study of nonlinear relations
between frequencies of digits and the dimension of sets defined in terms of these re-
lations (see for example [6]). Often, the lack of alternative formulas for conditional
variational principles cause considerable difficulties in making more explicit com-
putations of dimensions. It is also one of our objectives to obtain such alternative
formulas in the context of studying nonlinear relations. Interestingly (and perhaps
rather surprisingly as well), our main results do not require and can in fact be
considered independent of the new nonlinear thermodynamic formalism introduced
in [12] (see also [4]).

Before proceeding to a more detailed presentation of our results, we detail briefly
the main contributions of the present work:

1. We apply the thermodynamic approach to obtain nonlinear versions of con-
ditional variational principles for Rd-valued continuous potentials, with and
without uniqueness of equilibrium states.

2. This description includes the connection with topological pressure, a detailed
analysis of generalized level sets with divergent points and nonlinear level
sets, and information on ergodic (nonlinear) full measures.

3. We apply our results to describe a relation between the dimension spectrum
and the classical topological pressure, while also giving examples related to
the frequency of symbols and digits in some number representations.

4. Moreover, we use the existence of ergodic nonlinear full measures to study
the dimension of the sets of nontypical points with respect to nonlinear
perturbations of Birkhoff’s averages and some multiple ergodic averages.

5. Finally, we apply our results on the existence of ergodic nonlinear full mea-
sures to obtain a better understanding of more general intermediate dimen-
sion properties for maps with some hyperbolic behavior.

Now we give a detailed description of our main result. For basic notions and
results, we refer the reader to Section 2 (we avoid detailing them here, which would
require a rather extended introduction). These include in particular notions re-
lated to linear and nonlinear level sets, dimension theory, and the thermodynamic
formalism.

Our main result—a nonlinear conditional variational principle—describes rela-
tions between nonlinear entropy and dimension spectra and the classical topological
pressure. It is obtained through a correspondence between level sets with different
limit points and nonlinear level sets, combined with results in [13]. Here we formu-
late the result only in the particular case of entropy spectra (see Theorem 3 for the
general case of dimension spectra). Consider a map T : X → X of a compact met-
ric space. Given a collection of real-valued continuous functions Φ = {ϕ1, . . . , ϕd}
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on X, we consider the compact set

L =

{∫
X

Φ dµ : µ ∈ M(T )

}
with

∫
X

Φ dµ =

(∫
X

ϕ1 dµ, . . . ,

∫
X

ϕd dµ

)
,

where M(T ) denotes the set of T -invariant probability measures on X.

Theorem 1. Assume that T has upper semicontinuous metric entropy and finite
topological entropy, and that there exists a dense subspace D(X) in the continuous
functions such that every ξ ∈ D(X) has a unique equilibrium measure. Given a
continuous function F : U → Rp, where U is an open set containing L, for each
β ∈ Rp with F−1β ∩ L ⊂ intL we have:

1.

h(T |CF
β ) = sup

µ∈M(T )

{
hµ(T ) : F

(∫
X

Φ dµ

)
= β

}
= sup

α∈F−1β

sup
µ∈M(T )

{
hµ(T ) :

∫
X

Φ dµ = α

}
= sup

α∈F−1β

sup
µ∈M(T )

{hµ(T ) : µ ∈ MCα(T )}

= sup
α∈F−1β

inf
q∈Rd

P (⟨q,Φ− α⟩) = sup
α∈F−1β

h(|Cα);

2. given ε > 0, there exists an ergodic measure ν ∈ M(T ) with F (
∫
X
Φ dν) = β

and ν(CF
β ) = 1 such that∣∣hν(T )− h(T |CF

β )
∣∣ < ε.

As far as we know, this result gives the first relation between the topological pres-
sure and a general nonlinear conditional variational principle. The approximation
via ergodic measures is crucial for studying nontypical points in the nonlinear case
(see Section 7), for establishing some connections to multiple ergodic averages (see
Section 9), and for extending intermediate entropy and dimension properties with
respect to some hyperbolic systems (see Section 10). Following the developments
in [5] and [7], we also obtain a sharper nonlinear conditional variational principle
with all suprema replaced by maxima under more restrictive assumptions (see The-
orem 6). We consider briefly the case of mixed spectra for conformal repellers in
Section 3.3.

As further developments, in Section 4 we discuss the number and characterization
of full measures. It turns out that when Φ has more than one potential, one may
have parameters β with uncountably many nonlinear full measures. Furthermore,
we consider the problem of the regularity of the nonlinear dimension spectrum in
Section 5, and we explore some connections between the multifractal spectra of level
sets with divergent points and the nonlinear thermodynamic formalism introduced
in [12] to study the finer structure of the level sets in Section 6.

Concerning applications, in Section 7 we use the existence of nonlinear full mea-
sures to study the dimension of nonlinear irregular sets. In particular, this extends
several results in [8]. The main element of our approach is the approximation of
nonlinear full measures by distinguishing measures. Using Markov partitions, one
could also obtain corresponding results for uniformly expanding and hyperbolic
maps. We emphasize that some related nonlinear multifractal problems were dis-
cussed in [22], although using different methods. However, their approach cannot
decide if some types of irregular sets have full topological entropy (see Remark 8 for
details). Furthermore, in Section 8 we describe some applications of the nonlinear
conditional variational principle to relations between frequencies of digits and the
entropy and dimension spectra that they define.
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In Section 9, combining our main theorem with results in [19] for the full shift,
we obtain a relation between the Hausdorff dimension of level sets generated by
some multiple ergodic averages, the nonlinear Hausdorff dimension spectrum and
the classical topological pressure. Together with the existence of distinguishing and
ergodic full measures, this relation also gives conditions for which the set of nontyp-
ical points with respect to multiple ergodic averages has full Hausdorff dimension.

Finally, inspired by recent work in [17], in Section 10 we study some relations
between intermediate entropy and dimension properties of ergodic measures and
their nonlinear counterparts. This is a further application of the existence of ergodic
nonlinear full measures obtained in our work.

2. Basic notions and preliminaries

2.1. Linear and nonlinear level sets. Let X be a compact metric space and
let T : X → X be a continuous map. We denote by M(T ) the set of T -invariant
probability measures on X. Consider a collection Φ = {ϕ1, . . . , ϕd} of continuous
functions ϕi : X → R for i = 1, . . . , d and a continuous function F : U → Rp, where
U ⊂ Rd is an open set containing the compact set

L =

{∫
X

Φ dµ : µ ∈ M(T )

}
with

∫
X

Φ dµ =

(∫
X

ϕ1 dµ, . . . ,

∫
X

ϕd dµ

)
.

Given a continuous function φ : X → R, we write Snφ =
∑n−1

k=0 φ ◦ T k for n ∈ N.
For each α ∈ Rd, we consider the linear level set

Cα =

{
x ∈ X : lim

n→∞

SnΦ(x)

n
= α

}
, where SnΦ = (Snϕ1, . . . , Snϕd).

It is well known that Cα = ∅ whenever α /∈ L. Furthermore, for each β ∈ Rp we
consider the nonlinear level set

CF
β =

{
x ∈ X : lim

n→∞
F

(
SnΦ(x)

n

)
= β

}
.

Clearly, CF
β = ∅ whenever β /∈ F (L) ⊂ Rp.

For each j ∈ {1, . . . , d}, we denote by Sj
∞(x) ⊂ R the set of limit points of the

sequence (Snϕj(x)/n)n∈N. Since these sequences are bounded and

lim
n→∞

[
1

n+ 1
Sn+1ϕj(x)−

1

n
Snϕj(x)

]
= 0

for all x ∈ X and j ∈ {1, ..., d}, exactly one of the following alternatives holds:

1. (Snϕj(x)/n)n∈N converges and Sj
∞(x) is a singleton or

2. (Snϕj(x)/n)n∈N diverges and Sj
∞(x) is the closed interval

Ij(x) =

[
lim inf
n→∞

1

n
Snϕj(x), lim sup

n→∞

1

n
Snϕj(x)

]
.

Moreover, let S∞(x) ⊂ Rd be the set of limit points of the sequence (SnΦ(x)/n)n∈N.
For each A ⊂ Rd, we also consider the more general (level) sets

CA = {x ∈ X : S∞(x) ⊂ A}. (1)

Note that for A = {α} we have C{α} = Cα. Clearly,
⋃

α∈A Cα ⊆ CA, but this
inclusion may be proper since CA may contain points x ∈ X for which the sequence
(SnΦ(x)/n)n∈N diverges.

One can also consider the sets S̃∞(x) = S1
∞(x)× · · · × Sd

∞(x). Clearly S∞(x) ⊆
S̃∞(x) and in general this inclusion may be proper. For instance, for Φ = {ϕ1, ϕ2}
with ϕ1 cohomologous to ϕ2, the set S∞(x) is either a point or a diagonal line. On
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the other hand, for each x ∈ X the set S̃∞(x) is the square I1(x)× I2(x). Finally,
given A ⊂ Rd, we consider the level sets

C̃A = {x ∈ X : S̃∞(x) ⊂ A}.

For each x ∈ X the set S̃∞(x) ⊆ I1(x)× · · · × Id(x) is either a point, a hyperplane

or a hyperrectangle. For instance, in dimension 1 each set S̃∞(x) is a singleton or
a closed interval, while in dimension 2 it is a point, a vertical or horizontal line, or
a rectangle (see Figure 1).

A

S̃∞(x)

I2(x)

I1(x)

I1(x
′)

I2(x
′)

S̃∞(x′)

S̃∞(x)

Figure 1. Possible types of sets S̃∞(x) ⊂ A ⊂ R2.

The following example gives a general scenario where CA = C̃A.

Example 1. Let A ⊂ Rd be a countable set. Then CA and C̃A are composed of
points x ∈ X for which the sequence (SnΦ(x)/n)n∈N converges to some α ∈ A, and

one can see that CA =
⋃

α∈A Cα = C̃A. □

We give another example where the shape of the set S̃∞(x) plays a crucial role.

Example 2. Let F : R2 → R be the quadratic function F (x, y) = x2+y2. For each
β ∈ intL, the set A := F−1β is the circle S1 ⊂ R2 of radius

√
β centered at (0, 0).

Since there are no lines nor rectangles contained in S1, the set C̃A is composed of
points x ∈ X for which (SnΦ(x)/n)n∈N converges to some α ∈ A. In this case A is

an uncountable set, but we still have C̃A =
⋃

α∈A Cα. □

We note that in general C̃A ⊂ CA, and we may have CA ̸=
⋃

α∈A Cα. When F

is a nonlinear function and F−1β contains at least one hyperplane, it is not hard to
find a dynamical system and continuous potentials such that CF−1β ̸=

⋃
α∈F−1β Cα.

In this work we consider the more general (and less rigid) level sets CA instead

of C̃A. A good reason for this is the connection to nonlinear level sets in Section 3.1.

2.2. Dimension theory and thermodynamic formalism. We first recall a use-
ful notion of dimension introduced in [8]. Let T : X → X be a continuous map of
a compact metric space. Given a finite open cover U of X, for each n ∈ N let Xn

be the set of strings U = (U1, . . . , Un) with Ui ∈ U for i = 1, . . . , n. We write
m(U) = n and define

X(U) =
{
x ∈ X : T k−1(x) ∈ Uk for k = 1, . . . ,m(U)

}
.
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We say that a set Γ ⊂
⋃

n∈N Xn covers a set Z ⊂ X if Z ⊂
⋃

U∈ΓX(U). Given a
continuous function u : X → R+, for each U ∈ Xn we define

u(U) =

{
supX(U)

1
nSnu(x) if X(U) ̸= ∅,

−∞ if X(U) = ∅.

Finally, given a set Z ⊂ X and a number α ∈ R, let

NZ(α, u,U) = lim
n→∞

inf
Γ

∑
U∈Γ

exp(−αu(U)),

with the infimum taken over all Γ ⊂
⋃

k≥n Xk covering Z and with the convention

that exp(−∞) = 0. Denoting by diamU the diameter of U, one can show that

dimu Z := lim
diamU→0

dimu,U Z, where dimu,U Z = inf
{
α ∈ R : NZ(α, u,U) = 0

}
,

is well defined. This is called the u-dimension of Z with respect to T . When u = 1,
we have dimu Z = htop(T |Z), the topological entropy of T restricted to Z (see [9]).
Moreover, when X is a repeller of a C1 conformal expanding map T : X → X and
u(x) = log ∥dxT∥, we have dimu Z = dimH Z for every set Z ⊂ X, where dimH Z
denotes the Hausdorff dimension of Z. The function β 7→ htop(T |CF

β ) is called the

nonlinear entropy spectrum and the functions β 7→ dimu C
F
β and β 7→ dimH CF

β are
called nonlinear dimension spectra.

Given a Borel probability measure ν on X, the limit

dimu ν = lim
diamU→0

inf
{
dimu,U Z : ν(Z) = 1

}
is called the u-dimension of ν. We also introduce local quantities that generalize
the notion of pointwise dimensions. The lower and upper u-pointwise dimensions
of ν at a point x ∈ X are defined respectively by

dν,u(x) = lim
diamU→0

lim inf
n→∞

inf
U

− log ν(X(U))

u(U)
,

dν,u(x) = lim
diamU→0

lim sup
n→∞

sup
U

− log ν(X(U))

u(U)
.

When ν ∈ M(T ) is ergodic, it was proved in [8] that

dimu ν = dν,u(x) = dν,u(x) =
hν(T )∫
X
u dν

,

where hν(T ) is the Kolmogorov–Sinai entropy of T with respect to ν ∈ M(T ).
Pesin and Pitskel’ extended the notion of topological pressure to noncompact

sets in [31]. Given a continuous function φ : X → R, a set Z ⊂ X and a number
α ∈ R, let

MZ(α,φ,U) := lim
n→∞

inf
Γ

∑
U∈Γ

exp(−αm(U) + φ(U)),

with the infimum taken over all Γ ⊂
⋃

k≥n Xk covering Z. Letting

PZ(φ,U) = inf
{
α ∈ R :MZ(α,φ,U) = 0

}
,

one can show that the limit

PZ(φ) = lim
diamU→0

PZ(φ,U)

exists. It is called the topological pressure of φ on the set Z ⊂ X (with respect
to T ). Note that s = dimu Z is the unique solution of the equation PZ(−tu) = 0.
When Z is the whole space X, we also write PX(φ) = P (φ).

Finally, we recall the notion of nonlinear topological pressure considered in [12]
(see also [4]). Given n ∈ N and ε > 0, a set E ⊂ X is said to be (n, ε)-separated if
dn(x, y) > ε for every x, y ∈ E with x ̸= y. Since X is compact, any (n, ε)-separated
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set is finite. Let F : Rd → R be a continuous function and let Φ = {ϕ1, . . . , ϕd}
be a family of continuous functions ϕi : X → R for i = 1, . . . , d. The nonlinear
topological pressure of Φ with respect to F is defined by

PF (Φ) = lim
ε→0

lim sup
n→∞

1

n
log sup

E

∑
x∈E

exp

[
nF

(
SnΦ(x)

n

)]
,

with the supremum taken over all (n, ε)-separated sets E.
Following [12], we say that the pair (T,Φ) has an abundance of ergodic measures

if for each µ ∈ M(T ), h < hµ(T ) and ε > 0 there exists an ergodic measure
ν ∈ M(T ) such that hν(T ) > h and∣∣∣∣∫

X

ϕi dν −
∫
X

ϕi dµ

∣∣∣∣ < ε for i = 1, . . . , d.

When (T,Φ) has an abundance of ergodic measures or F is a convex function, we
have the variational principle

PF (Φ) = sup
µ

(
hµ(T ) + F

(∫
X

Φ dµ

))
,

with the supremum taken over measures µ ∈ M(T ). A measure η ∈ M(T ) is said
to be an equilibrium measure for (F,Φ) with respect to T if

PF (Φ) = hη(T ) + F

(∫
X

Φ dη

)
.

When Φ = {φ} and F is the identity function, we recover the classical topological
pressure PX(φ) of φ with respect to T . A measure µ ∈ M(T ) is said to be an
equilibrium measure for φ if

PX(φ) = hµ(T ) +

∫
X

φdµ.

3. Nonlinear dimension spectra

In this section we explore different types of nonlinear entropy and dimension
spectra and we study some relations between them and the classical topological
pressure.

3.1. Nonlinear conditional variational principles. First we establish several
nonlinear conditional variational principles for the entropy and dimension spectra
using results coming solely from the thermodynamic formalism. In particular, this
allow us to give more detailed information about the measures of maximal entropy
and maximal dimension.

Let C0(X) be the set of continuous functions f : X → R and let MZ(T ) ⊂ M(T )
be the set of measures µ ∈ M(T ) with µ(Z) = 1. The following theorem can be
obtained combining Theorem C, Theorem 3.3 and Proposition 2.14 in [13].

Theorem 2 ([13]). Let T : X → X be a continuous map of a compact metric space
such that the metric entropy µ 7→ hµ(T ) is upper semicontinuous and htop(T ) < ∞.
Suppose that u : X → R+ is a continuous function, Φ = {ϕ1, . . . , ϕd} is a collection
of real-valued continuous functions on X and that there exists a dense subspace
D(X) ⊂ C0(X) such that every ξ ∈ D(X) has a unique equilibrium measure.
Then:



8 L. BARREIRA, C. E. HOLANDA, X. HOU, AND X. TIAN

1. for each compact set A ⊂ intL we have

dimu CA = sup
α∈A

sup
µ∈M(T )

{
hµ(T )∫
X
u dµ

:

∫
X

Φ dµ = α

}
= sup

α∈A
sup

µ∈M(T )

{
hµ(T )∫
X
u dµ

: µ ∈ MCα(T )

}
= sup

α∈A
inf
q∈Rd

Su(α, q) = sup
α∈A

dimu Cα,

where Su(α, q) is the unique number such that P (⟨q,Φ−α⟩−Su(α, q)u) = 0;
2. given α ∈ intL, for each ε > 0 there exists an ergodic measure ν ∈ M(T )

with
∫
X
Φ dν = α and ν(Cα) = 1 such that∣∣dimu ν − dimu Cα

∣∣ < ε;

3. the map intL ∋ α 7→ dimu Cα is continuous.

The next theorem is our main result. It is obtained through a correspondence
between level sets with different limit points and nonlinear level sets, combined with
Theorem 2. As far as we know, this is the first relation between the topological
pressure and the nonlinear conditional variational principle. Furthermore, we ap-
proximate the nonlinear dimension spectrum via ergodic measures, which is crucial
for studying nontypical points in the nonlinear case (see Section 7), for establishing
some connections to multiple ergodic averages (see Section 9), and for extending
intermediate entropy and dimension properties with respect to some hyperbolic
systems (see Section 10).

Theorem 3 (Nonlinear conditional variational principle). Let T : X → X be a con-
tinuous map of a compact metric space such that the metric entropy µ 7→ hµ(T ) is
upper semicontinuous and htop(T ) < ∞. Suppose that u : X → R+ is a continuous
function, Φ = {ϕ1, . . . , ϕd} is a collection of real-valued continuous functions on X
and that there exists a dense subspace D(X) ⊂ C0(X) such that every ξ ∈ D(X) has
a unique equilibrium measure. Moreover, let F : U → Rp be a continuous function,
where U is an open set containing L. Then for each β ∈ Rp with F−1β ∩L ⊂ intL
we have:

1.

dimu C
F
β = sup

µ∈M(T )

{
hµ(T )∫
X
u dµ

: F

(∫
X

Φ dµ

)
= β

}
= sup

α∈F−1β

sup
µ∈M(T )

{
hµ(T )∫
X
u dµ

:

∫
X

Φ dµ = α

}
= sup

α∈F−1β

sup
µ∈M(T )

{
hµ(T )∫
X
u dµ

: µ ∈ MCα
(T )

}
= sup

α∈F−1β

inf
q∈Rd

Su(α, q) = sup
α∈F−1β

dimu Cα,

(2)

where Su(α, q) is the unique number such that P (⟨q,Φ−α⟩−Su(α, q)u) = 0;
2. given ε > 0, there exists an ergodic measure ν ∈ M(T ) with F (

∫
X
Φ dν) = β

and ν(CF
β ) = 1 such that∣∣dimu ν − dimu C

F
β

∣∣ < ε.

Proof. We need an auxiliary key lemma, which connects level sets with distinct
limit points and nonlinear level sets.

Lemma 1. Let T : X → X be a continuous map of a compact metric space and
let Φ: X → Rd be a continuous function. Given a continuous function F : Φ(X) ⊂
Rd → Rp, we have CF−1β = CF

β for any β ∈ Rp.
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Proof of the lemma. Take x ∈ CF
β . Then the sequence (F (SnΦ(x)/n))n∈N con-

verges to β. Given α ∈ S∞(x), there is a subsequence (Snk
Φ(x)/nk)k∈N converging

to α. Since F is continuous, this readily implies that

F (α) = F

(
lim
k→∞

1

nk
Snk

Φ(x)

)
= lim

k→∞
F

(
1

nk
Snk

Φ(x)

)
= β,

and so α ∈ F−1β. Therefore, S∞(x) ⊂ F−1β and we obtain that x ∈ CF−1β .
Now take x ∈ CF−1β . This means that S∞(x) ⊂ F−1β, which readily implies

that F (S∞(x)) ⊂ {β}. We also consider the set

SF
∞(x) =

{
γ ∈ Rp : there exists a subsequence F

(
1

mk
Smk

Φ(x)

)
→ γ

}
.

We claim that SF
∞(x) ⊂ F (S∞(x)). In fact, consider a subsequence satisfying

F ( 1
mk
Smk

Φ(x)) → γ. Since (SnΦ(x)/n)∈N is bounded, one can take a subsequence

ℓk of mk such that 1
ℓk
SℓkΦ(x) converges to some α ∈ Rd. Thus,

F (α) = lim
k→∞

F

(
1

ℓk
SℓkΦ(x)

)
= lim

k→∞
F

(
1

mk
Smk

Φ(x)

)
= γ

and α ∈ S∞(x). This shows that γ ∈ F (S∞(x)), and finally we have SF
∞(x) ⊂

F (S∞(x)) ⊂ {β}. Therefore, the sequence F ( 1nSnΦ(x))n∈N has the unique limit
point β. Moreover, since this sequence is bounded, it converges to β, that is,
x ∈ CF

β . □

Since each closed set F−1β ⊂ L is compact, all the equalities in (2) follow directly
from the first item in Theorem 2 together with Lemma 1.

Now we prove item 2. By item 3 in Theorem 2, the dimension spectrum intL ∋
α 7→ dimu Cα is continuous. Since F−1β ⊂ intL is compact, there exists α∗ ∈ F−1β
such that

dimu C
F
β = sup

α∈F−1β

dimu Cα = dimu Cα∗ .

It follows from item 2 in Theorem 2 that for each ε > 0 there exists an ergodic
measure ν ∈ M(T ) concentrated on Cα∗(Φ) with

∫
X
Φ dν = α∗ such that∣∣dimu Cα∗(Φ)− dimu ν

∣∣ < ε.

Since Cα∗ ⊂ CF
β , we also have ν(CF

β ) = 1. Moreover, F (
∫
X
Φ dν) = F (α∗) = β,

and the theorem is proved. □

Taking the constant function u = 1 in Theorem 3, we obtain a corresponding
result for the nonlinear entropy spectrum. Furthermore, in the case of conformal
repellers one can apply Theorem 3 to unify many results in the literature for entropy
and dimension spectra. This includes for example Theorems 3.4, 3.5 and 3.6 in [13].
See Section 3.3 for further applications.

We also observe that any level set can actually be considered as a particular type
of a nonlinear level set.

Proposition 4. Let T : X → X be a continuous map of a compact metric space
and let Φ: X → Rd be a continuous function. Given a compact set A ⊂ L and a
number β ∈ R, there exists a C∞ function F : Rd → R such that CA = CF

β .

Proof. It is well known that any compact set A ⊂ Rd can be realized as the set of
solutions of an equation G(x) = 0, where G : Rd → [0,∞) is a C∞ function. Thus,
F−1β = A for the function F (x) = G(x) + β, and so CA = CF−1β . The conclusion
now follows from Lemma 1. □
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By Lemma 1 and Proposition 4, each set CA is equal to CG−1λ = CG
λ for some

smooth function G : Rd → R and some λ ∈ R. Thus, in the nonlinear condi-
tional variational principle in Theorem 3, it suffices to consider real-valued C∞

functions F .
Furthermore, again as a consequence of Lemma 1 and Proposition 4, one can

obtain a corresponding result for general level sets containing divergent points as
defined in (1), under the setup of Theorem 7.2 in [36].

Corollary 5. Let T : X → X be a continuous map of a compact metric space
satisfying the specification property and such that the entropy map µ 7→ hµ(T ) is
upper semicontinuous. Suppose that Φ: X → Rd is a continuous function. Then
for each compact set A ⊂ Rd with CA ̸= ∅ we have

htop(T |CA) = sup
α∈A

sup
µ∈M(T )

{
hµ(T ) :

∫
X

Φ dµ = α

}
= sup

α∈A
htop(T |Cα).

Remark 1. Similarly, Lemma 1 and Proposition 4 allow us to obtain correspon-
dences between many results involving nonlinear conditional variational principles
and conditional variational principles for level sets containing divergent points pre-
sented in [27] and [28]. We refrain from detailing these applications explicitly.

We continue to assume that T : X → X is a continuous map of a compact metric
space, u : X → R is a strictly positive continuous function, and Φ: X → Rd and
F : Rd → Rp are continuous functions. Given α ∈ L, a measure µ ∈ M(T ) is called
a full measure for the level set Cα or simply a full measure for α if

∫
X

Φ dµ = α, µ(Cα) = 1 and dimu Cα =
hµ(T )∫
X
u dµ

.

Then we also say that α admits a full measure. Similarly, ν ∈ M(T ) is called a
full measure for the nonlinear level set CF

β or simply a nonlinear full measure for β

(with respect to F ) if

F

(∫
X

Φ dν

)
= β, ν(CF

β ) = 1 and dimu C
F
β =

hν(T )∫
X
u dν

.

Then we also say that β admits a nonlinear full measure (with respect to F ).
Inspired by the multifractal formalisms developed in [5] and [7], we also ob-

tain a sharper nonlinear conditional variational principle with all the suprema
in Theorem 3 replaced by maxima under more restrictive assumptions. Further-
more, we also can guarantee the existence of ergodic nonlinear full measures. Let
UE(X) ⊂ C0(X) be the set of continuous functions having a unique equilibrium
measure.

Theorem 6. Let T : X → X be a continuous map of a compact metric space such
that the metric entropy µ 7→ hµ(T ) is upper semicontinuous and htop(T ) < ∞.
Suppose that u : X → R+ is a continuous function and that Φ = {ϕ1, . . . , ϕd} is a
collection of real-valued continuous functions on X such that span{u, ϕ1, . . . , ϕd} ⊂
UE(X). Moreover, let F : U → Rp be a continuous function on some open set U
containing L. Then for each β ∈ Rp with F−1β ∩ L ⊂ intL we have:
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1.

dimu C
F
β = max

µ∈M(T )

{
hµ(T )∫
X
u dµ

: F

(∫
X

Φ dµ

)
= β

}
= max

α∈F−1β
max

µ∈M(T )

{
hµ(T )∫
X
u dµ

:

∫
X

Φ dµ = α

}
= max

α∈F−1β
max

µ∈M(T )

{
hµ(T )∫
X
u dµ

: µ ∈ MCα
(T )

}
= max

α∈F−1β
min
q∈Rd

Su(α, q) = max
α∈F−1β

dimu Cα,

(3)

where Su(α, q) is the unique number such that P (⟨q,Φ−α⟩−Su(α, q)u) = 0;
2. there exists an ergodic nonlinear full measure νβ for β, thus satisfying

dimu C
F
β = dimu νβ .

Proof. The proof of this theorem uses some important elements from the classical
thermodynamic formalism, of which the main ingredient is the following result (see
Theorem 4.2.11 in [25]).

Lemma 2. Let T : X → X be a continuous map of a compact metric space such
that the metric entropy µ 7→ hµ(T ) is upper semicontinuous. Then:

• given φ ∈ C0(X), the map R ∋ t 7→ P (φ+tψ) is differentiable at t = 0 for all
ψ ∈ C0(X) if and only if φ ∈ UE(X), in which case the unique equilibrium
measure ηφ for φ is ergodic and

d

dt
P (ϕ+ tψ)|t=0 =

∫
X

ψ dηϕ;

• if φ,ψ ∈ C0(X) are such that span{φ,ψ} ⊂ UE(X), then the function t 7→
P (φ+ tψ) is of class C1.

We proceed with the proof of the theorem, which is a combination of Lemma 1
and Theorem 2 together with Theorem 8 in [7]. Given α ∈ L, we consider the
function Γα : Rd → R defined by

Γα(q) = P
(
⟨q,Φ− α⟩ − dimu Cαu

)
.

By Lemmas 1 and 2 in [7] we have

inf
q∈Rd

Γα(q) ≥ 0 for α ∈ L,

inf
q∈Rd

Γα(q) = 0 for α ∈ intL,

and there exists q(α) ∈ Rd such that Γα(q(α)) = 0. Since span{u, ϕ1, ..., ϕd} ⊂
UE(X), by Lemma 2 the map q 7→ Γα(q) is of class C1, and so ∂qΓα(q(α)) = 0.
Now let µα be the unique equilibrium measure of the potential

Hα = ⟨q(α),Φ− α⟩ − dimu Cαu. (4)

By Lemma 2 we have ∫
X

(Φ− α) dµα = ∂qΓα(q(α)) = 0.

Proceeding as in the proof of Theorem 8 in [7], one also can verify that µα is ergodic
and satisfies

µα(Cα) = 1 and dimu Cα =
hµα(T )∫
X
u dµα

= dimu µα. (5)
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Moreover, since minq∈Rd Γα(q) = Γα(q(α)), using the definition of Su(α, q) one can
verify that the spectrum is given by

dimu Cα = min
q∈Rd

Su(α, q) = Su(α, q(α)).

Since F−1β ⊂ intL is compact and the dimension spectrum α 7→ dimu Cα is
continuous on intL, by Lemma 1 and Theorem 2 we finally obtain

dimu C
F
β = dimu CF−1β = max

α∈F−1β
dimu Cα.

This establishes all the identities in (3).
Let us now establish the second item. Observe that there exists α∗ ∈ F−1β such

that dimu C
F
β = dimu Cα∗ and Cα∗ ⊂ CF

β . Together with (5) this yields

µα∗(CF
β ) = 1, F

(∫
X

Φ dµα∗

)
= β and dimu C

F
β = dimu µα∗ .

Hence, the result follows by taking νβ = µα∗ , which completes the proof of the
theorem. □

Remark 2. Besides being useful for applications, Theorem 6 also gives a suffi-
ciently general setup that allow one to extract the optimal outcome of the nonlinear
multifractal analysis via the thermodynamic formalism (in the sense that one can
guarantee the existence of nonlinear full measures). In addition, it allows one to
recover several related results in the literature; In particular, if we consider the
nonlinear function F : R2d → Rd given by

F (x1, . . . , xd, xd+1, . . . , x2d) =

(
x1
xd+1

, . . . ,
xd
x2d

)
and the assumption that ϕj > 0 for all d+1 ≤ j ≤ 2d, we recover Theorem 8 in [7].
As we shall see in the next section, Theorems 3 and 6 extend and unify many results
in the literature, such as in [7, 8, 13, 14], for various mixed and nonmixed entropy
and dimension spectra in one and higher-dimensions.

3.2. Further developments. Before proceeding, we briefly recall some notions
that are necessary in this section. Given δ > 0, we say that T has weak specification
at scale δ if there exists τ ∈ N such that for any pairs (x1, n1), . . . , (xk, nk) ∈ X×N
there are y ∈ X and τ1, . . . , τk−1 ∈ N such that τi ≤ τ and

dni
(T si−1+τi−1(y), xi) < δ for i = 1, . . . , k,

where si =
∑i

j=1 nj +
∑i−1

j=1 τj with n0 = τ0 = 0. When one can take τj = τ
for j = 1, . . . , k − 1, we say that T has specification at scale δ. Finally, we say
that T has weak specification (respectively specification) if it has weak specification
(respectively specification) at scale δ for all δ > 0.

A nonlinear conditional variational principle for the topological entropy was ob-
tained by Takens and Verbitskiy in [36] for systems with the specification property
and with an upper semicontinuous metric entropy. Their result was obtained by
the so-called orbit-gluing approach, in particular showing no connection with the
topological pressure nor presenting any information about measures concentrated
on the level sets. They also asked whether the identity

htop(T |CF
β ) = sup

α∈F−1β

htop(T |Cα) (6)

holds for systems without the specification property.
Following [8], we give examples of dynamical systems without specification to

which Theorems 3 and 6 still apply. Denote by [x] and {x} the integer and fractional
parts of x ∈ R, respectively. Let β > 1 be a real number and define a map
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T : [0, 1] → [0, 1] by T (x) = {βx}. The expansion of x ∈ [0, 1] in base β is the
sequence of integers (in)n∈N in {0, . . . , [β]} defined by in = [Tn−1(x)] for n ∈ N. We
endow the set Σβ = {0, . . . , [β]}N with the product topology and consider the shift
map σ : Σβ → Σβ given by σ(i1i2 · · · ) = (i2i3 · · · ), which is called the β-shift. We
recall that any β-shift is expansive and has an upper semicontinuous metric entropy
(see for example [25]). However, for β in a residual set of full Lebesgue measure, the
corresponding β-shift does not satisfy the specification property (see [35]). It follows
from [38] that each Lipschitz function has a unique equilibrium measure with respect
to any β-shift, and so our Theorem 3 applies in this setting. Moreover, it yields a
more general identity for the u-dimension, namely

dimu C
F
β = sup

α∈F−1β

dimu Cα, (7)

when F−1β ⊂ intL. In particular, (6) holds for any β-shift with β in a residual set.
We observe that when T : X → X does not satisfy the specification property

and F−1β ∩ ∂L ̸= ∅, it may happen that

sup
α∈F−1β

sup
µ∈M(T )

{
hµ(T )∫
X
u dµ

:

∫
X

Φ dµ = α

}
> sup

α∈F−1β

dimu Cα (8)

(see the discussion in Section 3.4 of [14]). Now assume that T and Φ satisfy the
hypotheses of Theorem 3 and that the spectrum α 7→ dimu Cα restricted to F−1β
attains its maximum at some point α∗ ∈ intL. Then it follows from Lemma 1,
Theorem 3 and (8) that

dimu C
F
β = dimu CF−1β ≥ dimu Cα∗

= sup
µ∈M(T )

{
hµ(T )∫
X
u dµ

: F

(∫
X

Φ dµ

)
= β

}
> sup

α∈F−1β

dimu Cα,

On the other hand, when α∗ is a maximizing point for the spectrum in the whole
domain L we get

dimu C
F
β = dimu CF−1β ≥ dimu Cα∗ = dimuX,

which yields identity (7), that is,

dimu C
F
β = dimuX = sup

α∈F−1β

dimu Cα.

See Section 6 for a related discussion on the role of the maximizing points for the
dimension spectrum.

3.3. Nonlinear mixed spectra for repellers. In this section we consider briefly
the particular case of mixed spectra for conformal repellers. For simplicity of the
exposition we assume from the beginning that T : M → M is a C1 map of a
Riemmanian manifold and that µ is a T -invariant Borel probability measure on M .

Let B(x, r) ⊂ M be the open ball of radius r centered at x. We define the
pointwise dimension of µ at x ∈M by

dµ(x) = lim
r→0

logµ(B(x, r))

log r

whenever the limit exists. Moreover, we define the upper and lower µ-local entropies
of T at x ∈M respectively by

hµ(x) = lim
δ→0

lim sup
n→∞

− 1

n
logµ(Bn(x, δ)),

hµ(x) = lim
δ→0

lim inf
n→∞

− 1

n
logµ(Bn(x, δ)),
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where Bn(x, δ) is the Bowen ball

Bn(x, δ) =
{
y ∈M : d(T k(x), T k(y)) < ε for all 0 ≤ k < n

}
.

It was shown by Brin and Katok in [11] that hµ(x) := hµ(x) = hµ(x) for µ-almost
every x ∈M . Finally, given x ∈M , we define

λ(x) = lim
n→∞

1

n
log ∥dxTn∥

whenever the limit exists. By Kingman’s subadditive ergodic theorem, λ is well
defined µ-almost everywhere.

Now let J ⊂M be a compact T -invariant set (that is, T−1J = J). We say that
T is uniformly expanding on J and that J is a repeller of T if there exist constants
c > 0 and λ > 1 such that

∥dxTnv∥ ≥ cλn∥v∥ for all x ∈ J , n ∈ N and v ∈ TxM.

Moreover, we say that T is conformal on J if dxT is a multiple of an isometry for
every x ∈ J .

In this section we denote by M the set of T -invariant Borel probability measures
on J and by Merg ⊂ M the subset of ergodic measures. Let Φ = {ϕ1, . . . , ϕd} be a
collection of real-valued Hölder continuous functions on J and define the sets

E =

{
−
∫
J

Φ dµ : µ ∈ M

}
⊂ Rd, L =

{∫
J

log ∥dT∥ dµ : µ ∈ M

}
⊂ R,

D =

{
−

∫
J
Φ dµ∫

J
log ∥dT∥ dµ

: µ ∈ M

}
⊂ Rd.

We say that a measure µ onM is a weak Gibbs measure for a continuous function
ϕ : M → R (with respect to T ) if for any sufficiently small δ > 0 there exists a
sequence (Kn(δ))n∈N in [1,∞) with limn→∞

1
n logKn(δ) = 0 such that

Kn(δ)
−1 ≤ µ(Bn(x, δ))

exp[−nP (ϕ) + Snϕ(x)]
≤ Kn(δ)

for all x ∈ M and n ∈ N. Let νj be a weak Gibbs measure for each function ϕj in
the collection Φ. We also consider the nonlinear level sets of:

• local entropies and Lyapunov exponents

ELF
τ =

{
x ∈ J : F (hν1(x), . . . , hνd

(x), λ(x)) = τ
}
;

• pointwise dimensions and Lyapunov exponents

DLG
τ =

{
x ∈ J : G(dν1(x), . . . , dνd

(x), λ(x)) = τ
}
;

• local entropies and pointwise dimensions

EDH
τ =

{
x ∈ J : H(hν1(x), . . . , hνd

(x), dν1(x), . . . , dνd
(x)) = τ

}
,

where F : U ⊂ Rd+1 → Rd+1, G : V ⊂ Rd+1 → Rd+1 and H : W ⊂ R2d → R2d are
continuous functions defined respectively on open sets U ⊃ E × L, V ⊃ D × L and
W ⊃ E× D. Theorem 7 in [7] gives sufficient conditions so that the interior of the
domains E× L, D× L and E× D is nonempty.

Based on Theorem 3, we obtain a complete nonlinear multifractal analysis for
the mixed and nonmixed higher-dimensional spectra.

Theorem 7. Let J be a conformal repeller of a topologically mixing C1 expanding
map T . Suppose that all the functions in Φ have zero topological pressure and that
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νj is a weak Gibbs measure for ϕj for j = 1, . . . , d. Then taking u(x) = log ∥dxT∥,
for each τ ∈ Rd+1 with F−1τ ∩ (E× L) ⊂ int(E× L) we have

htop(T |ELF
τ ) = sup

µ∈Merg

{
hµ(T ) : F

(
−
∫
J

Φ dµ,

∫
J

u dµ

)
= τ

}
,

dimH ELF
τ = sup

µ∈Merg

{
hµ(T )∫
J
u dµ

: F

(
−
∫
J

Φ dµ,

∫
J

u dµ

)
= τ

}
.

(9)

As a consequence, we also obtain the following variational principles:

1. for each τ ∈ Rd+1 with G−1τ ∩ (D× L) ⊂ int(D× L) we have

htop(T |DLG
τ ) = sup

µ∈Merg

{
hµ(T ) : G

(
−
∫
J
Φ dµ∫

J
u dµ

,

∫
J

u dµ

)
= τ

}
,

dimH DLG
τ = sup

µ∈Merg

{
hµ(T )∫
J
u dµ

: G

(
−
∫
J
Φ dµ∫

J
u dµ

,

∫
J

u dµ

)
= τ

}
;

2. when Φ = {φ}, for each (τ1, τ2) ∈ R2 with

H−1(τ1, τ2) ∩ (E× D) ⊂ int(E× D)

we have

htop(T |EDH
τ ) = sup

µ∈Merg

{
hµ(T ) : H

(
−
∫
J

φdµ,−
∫
J
φdµ∫

J
u dµ

)
= (τ1, τ2)

}
,

dimH EDH
τ = sup

µ∈Merg

{
hµ(T )∫
J
u dµ

: H

(
−
∫
J

φdµ,−
∫
J
φdµ∫

J
u dµ

)
= (τ1, τ2)

}
.

Proof. Since T is differentiable and conformal on J , we have

λ(x) = lim
n→∞

1

n

n−1∑
k=0

log ∥dTk(x)T∥ = lim
n→∞

Snu(x)

n
. (10)

In addition, since each νj is a weak Gibbs measure with respect to ϕj and P (ϕj) = 0,
it follows readily that

hνj
(x) = lim

n→∞
−Snϕj(x)

n
and dνj

(x) = lim
n→∞

−Snϕj(x)

Snu(x)
(11)

for j = 1, . . . , d. Finally, it is well known that for a topologically mixing expanding
map, every Hölder continuous function has a unique equilibrium measure. Since
the set of Hölder continuous functions is dense in C0(X), one can apply Theorem 3
to obtain the nonlinear conditional variational principles for ELF

τ in (9).
Now consider the function Q : Rd × R+ → Rd+1 given by Q(x, y) = (x/y, y).

It follows from (10) and (11) that DLG
τ = ELG◦Q

τ , which proves item 1. Finally,
consider the function R : R×R+ → R2 given by R(x, y) = (x, x/y). It follows again
from (10) and (11) that EDH

τ = ELH◦R
τ , which gives item 2. □

Remark 3. Note that we only considered the case of a single potential in the last
item in Theorem 7. This is unavoidable since for d > 1 we always have int(E×D) = ∅
(see Section 4 in [7]).

When T is a topologically mixing C1+γ expanding map (for some γ > 0), each
function in Φ is Hölder continuous, and each νj is the equilibrium measure for ϕj ,
one can use Theorem 6 to obtain sharper conditional variational principles, where
each supremum over Merg in Theorem 7 is replaced by a maximum. Under these
hypotheses, Theorem 7 gives a nonlinear generalization of Theorem 6 in [7].

We also observe that one can use Theorems 3 and 6 to combine the aforemen-
tioned entropy and dimension spectra in various different ways, leading to nonlinear
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extensions of many results in the literature, including in particular of Theorems 3.8
and 3.10 in [13]. It is also worth mentioning that one can obtain nonlinear mul-
tifractal conditional variational principles for nonuniformly expanding conformal
repellers making the appropriate technical modifications following [13].

4. Number and characterization of full measures

Theorem 8 in [7] and Theorem 6 give a setup where each α ∈ intL admits a
full measure, and where each β ∈ Rp satisfying F−1β ∩ L ⊂ intL admits a nonlin-
ear full measure with respect to F . We are left with some natural related questions:

Q1.Under the conditions of Theorem 8 in [7], how many full measures are there
for each α ∈ intL? And what type of measures are they?

Q2. Under the conditions of Theorem 6, how many nonlinear full measures are
there for each β satisfying F−1β∩L ⊂ intL? And does the number of full measures
depend on the parameter β, on the nonlinear function F , or on the function u?

We observe that Q1 can be seen as a folklore-type question and was mentioned
before in the literature (see [2] and [3]). Nevertheless, to the best of our knowledge,
it was never systematically addressed in any setup.

We claim that each α ∈ intL admits a unique full measure. Indeed, suppose
that α ∈ intL admits a full measure µ ∈ M(T ). In particular,

dimu Cα =
hµ(T )∫
X
u dµ

and

∫
X

Φ dµ = α. (12)

By Theorem 8 in [7], α admits a full measure which is also the unique equilibrium
measure ηα for the potential Hα in (4). It follows from (12) that

hµ(T ) +

∫
X

Hα dµ = hµ(T ) +

∫
X

⟨q(α),Φ− α⟩ dµ− dimu Cα

∫
X

u dµ

=

(
hµ(T )∫
X
u dµ

− dimu Cα︸ ︷︷ ︸
=0

)∫
X

udµ = 0

=

(
hηα(T )∫
X
u dηα

− dimu Cα︸ ︷︷ ︸
=0

)∫
X

u dηα

= hηα(T ) +

∫
X

Hα dηα = P (Hα).

Hence, µ is also an equilibrium measure for Hα, which readily implies that µ = ηα.
This shows that the full measures are ergodic and unique. Note that when α1 ̸= α2,
the full measure ν for α1 is different from the full measure η for α2. Indeed, if
µ = ν = η, we would have µ(Cα1

) = µ(Cα2
) = 1, and so also µ(Cα1

∩ Cα2
) = 1.

However, since α1 ̸= α2, we have Cα1
∩ Cα2

= ∅.
Now we consider question Q2. By the proof of Theorem 6, each nonlinear full

measure for β is also the unique equilibrium measure for some potential Hα with
F (α) = β. Moreover, the number of nonlinear full measures for β is the number of
points α∗ ∈ F−1β maximizing the dimension spectrum α 7→ dimu Cα(Φ). In this
case, a very rough upper bound for the quantity of nonlinear full measures for β is
#F−1β.

Proposition 8. Under the hypotheses of Theorem 6, the following holds:
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• A. If F : Rd → Rd is invertible, then each β admits a unique nonlinear full
measure.

• B. When Φ = {ϕ}, if the dimension spectrum α 7→ dimu Cα is strictly
concave on intL, then each β admits at most two nonlinear full measures.

• C. When Φ = {ϕ}, if the dimension spectrum α 7→ dimu Cα is analytic on
intL, then each β admits finitely many nonlinear full measures.

Proof. Item A is immediate since #F−1β = 1 for all β with F−1β ∩L ⊂ intL. For
item B, we observe that if some β with F−1β ∩ L ⊂ intL admits three or more
nonlinear full measures, then the dimension spectrum attains a maximum at three
or more different elements of F−1β, and so it cannot be strictly concave on the
open interval intL.

Now we prove item C. It is well known that if an analytic function has infinitely
many zeros on a compact interval, then it is identically zero. This implies that
any nonconstant analytic function on the compact interval L has at most finitely
many critical points. Since the dimension spectrum α 7→ dimu Cα is assumed to be
analytic on intL, it follows that

#{nonlinear full measures for β} ≤ #{critical points of dimu Cα| intL}+ 1

for each β with F−1β ∩ L ⊂ intL, and the desired result follows. □

We emphasize that all cases A, B and C in Proposition 8 occur naturally in the
literature (see Sections 5 and 6).

When the collection Φ has more than one potential, and even when the dimension
spectrum is strictly concave and analytic, one may have parameters β admitting
uncountably many nonlinear full measures, as the following example shows.

Example 3. (Uncountably many nonlinear full measures). Let Σ = {1, 2, 3}N and
consider the shift map σ : Σ → Σ and the collection Φ = {ϕ1, ϕ2} composed of the
functions ϕ1, ϕ2 : Σ → R given by

ϕ1 = 1C1
and ϕ2 = 1C3

,

where 1A is the indicator function of the set A, and Cj is the cylinder set of all
sequences ω = (ω0ω1 . . . ) ∈ Σ with ω0 = j. In this case,

L =
{
(µ(C1), µ(C3)) : µ ∈ M(σ)

}
⊂ [0, 1]× [0, 1].

Since µ(C1) + µ(C2) + µ(C3) = 1 for every measure µ ∈ M(σ), Theorem 6 gives

E(α1, α2) : = htop(σ|C(α1,α2)) = max
µ∈M(σ)

{
hµ(σ) : (µ(C1), µ(C3)) = (α1, α2)

}
= −α1 logα1 − α2 logα2 − (1− α1 − α2) log(1− α1 − α2).

Moreover, clearly L =
{
(α1, α2) ∈ [0, 1]×[0, 1] : α1+α2 ≤ 1

}
. Notice that intL ̸= ∅

and that the spectrum (α1, α2) 7→ E(α1, α2) is strictly concave on L (see Figure 2).

c ≈ 0.9

Figure 2. The domain L and the entropy spectrum E : L→ R.
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Fix a number c ∈ [0, supE] such that the level set

S(c) :=
{
(α1, α2) ∈ L : E(α1, α2) = c

}
⊂ intL

(see Figure 2). Proceeding as in the proof of Proposition 4, one can find a smooth
function F : R2 → R and a number β ∈ R such that F−1β = S(c) ⊂ intL. It
follows from Theorem 6 that

htop(σ|CF
β ) = max

(α1,α2)∈F−1β
htop(σ|C(α1,α2))

= max
(α1,α2)∈S(c)

E(α1, α2) = c = E(α∗
1, α

∗
2)

for every (α∗
1, α

∗
2) ∈ S(c). In this case, each point of S(c) maximizes the entropy

spectrum, and so is associated to a distinct nonlinear full measure for β. Since S(c)
is the closed curve obtained from E(x, y) = c, we have an uncountable number of
nonlinear full measures for the level set CF

β .

5. Regularity of the nonlinear dimension spectrum

In this section we consider the problem of regularity of the nonlinear dimension
spectrum. More precisely, we study the case when F is a (nonlinear) function
defined on an open set containing the domain L ⊂ Rd and taking values in Rd.
For convenience of notation, we shall write DF

u (β) = dimu C
F
β , and in particular,

when u = 1, we shall write EF (β) = htop(T |CF
β ). We shall also denote the linear

spectra by
Du(α) = dimu Cα and E(α) = htop(T |Cα).

Based on Theorem 3, the domain of the nonlinear spectrum is the set{
β ∈ Rd : F−1β ∩ L ⊂ intL

}
.

Theorem 9. Under the hypotheses of Theorem 3, let F : U ⊃ L → Rd be a Ck

function on an open set U with k ≥ 1 or k = ω (real-analytic). Then for each β
satisfying F−1β ∩ L ⊂ intL and such that the Jacobian matrix of F restricted to

F−1β is invertible, there exist a neighborhood V of β and a Ck function F̃ : V → Rd

such that
DF

u = Du ◦ F̃ .
In particular, if the linear dimension spectrum Du is Ck (respectively continuous)
on intL, the nonlinear dimension spectrum DF

u is Ck (respectively continuous)
on V .

Proof. Take β ∈ Rd such that F−1β ∩ L ⊂ intL and consider the function H
given by H(β, x) = F (x) − β. For any α∗ ∈ F−1β, we have H(β, α∗) = 0 and, by
hypothesis, the matrix ∂2H(β, α∗) is invertible. By the implicit function theorem,

there exist an open set V ⊂ Rd containing β and a Ck function F̃ : V → Rd such

that F̃ (β) = α∗ and H(z, F̃ (z)) = 0 for all z ∈ V . Together with Theorem 3 this
implies that

DF
u (β) = max

α∈F−1β
Du(α) = Du(F̃ (β)) with F (F̃ (z)) = z for all z ∈ V .

If necessary, one can consider neighborhoods Ṽ ⊂ V andW ⊂ Ṽ such that F̃ (W ) ⊂
F−1Ṽ ⊂ intL. Then the regularity of F and of the linear spectrum on intL can
be used to obtain the regularity of the nonlinear spectrum on W . □

Remark 4. Theorem 9 includes of course the case when F is invertible. Moreover,
when T is a subshift of finite type, an Axiom A C1+γ diffeomorphism or a C1+γ

expanding map, assumed to be topologically mixing, and the functions in the col-
lection Φ = {ϕ1, . . . , ϕd} are Hölder continuous, it follows from Theorem 13 in [7]
that the dimension spectrum Du is analytic on intL. In these situations, with F
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as in Theorem 9, the nonlinear dimension spectrum is also analytic on its domain
(see Example 4). On the other hand, when the hypothesis on the Jacobian fails,
even discontinuities may appear (see Example 5).

6. Finer structure of the level sets

In this section we explore some connections between the multifractal spectra
of level sets with divergent points and the nonlinear thermodynamic formalism
introduced in [12].

We say that a function g : D ⊂ Rd → R ∪ {−∞} is concave of Cr Legendre type
for some 1 ≤ r ≤ ω (where ω stands for real-analytic) if:

• g is upper semicontinuous;
• D has nonempty interior and g is strictly concave and Cr on intD; moreover,

when r ≥ 2, the Hessian of g is negative-definite everywhere;
• for all sequences (xn)n∈N with xn ∈ intD converging to a point in ∂D, we
have limn→∞ |∇g(xn)| = +∞.

Let T : X → X be a continuous map of a compact metric space with finite
topological entropy and let Φ = {ϕ1, . . . , ϕd} be a collection of continuous functions
ϕj : X → R. We consider the entropy function h : Rd → R ∪ {−∞} given by

h(α) = sup
µ∈M(T )

{
hµ(T ) :

∫
X

Φ dµ = α

}
and the u-dimension function du : Rd → R ∪ {−∞} given by

du(α) = sup
µ∈M(T )

{
hµ(T )∫
X
u dµ

:

∫
X

Φ dµ = α

}
.

With the usual convention that sup ∅ = −∞ one can verify that, respectively,

L = {α ∈ Rd : h(α) ̸= −∞} and L = {α ∈ Rd : du(α) ̸= −∞}.

In particular, under the hypotheses of Theorem 2, we have

h(α) = htop(T |Cα) and du(α) = dimu Cα for all α ∈ intL. (13)

Following [12], we say that the pair (T,Φ) is Cr Legendre with 1 ≤ r ≤ ω if:

• the set L ⊂ Rd has nonempty interior;
• htop(T ) <∞;
• the function h is concave of Cr Legendre type.

In what follows, we shall write (T, u,Φ) to refer to {u,Φ} as the collection of
functions {u, ϕ1, . . . , ϕd}.

Denote by CT (X) ⊂ C0(X) the family of continuous functions φ : X → R for
which given ε > 0, there exists δ > 0 such that

|Snφ(x)− Snφ(y)| < ε whenever dn(x, y) < δ,

where

dn(x, y) = max
{
d(T k(x), T k(y)) : k = 0, . . . , n− 1

}
.

Let T be a topologically mixing subshift of finite type, an Axiom A C1+γ diffeomor-
phism or a C1+γ expanding map. When Φ = {ϕ1, . . . , ϕd} is such that ϕj ∈ CT (X)
for all 1 ≤ j ≤ d and the cohomology classes of the functions 1, ϕ1, . . . , ϕd are
linearly independent, then (T,Φ) is a C1 Legendre pair. Furthermore, when each
ϕj is Hölder continuous the pair (T,Φ) is Cω Legendre (see [12, Proposition 3.10],
[7, Theorem 12] and [7, Theorem 13]).
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Proposition 10. Let (T, u,Φ) be C1 Legendre and let F : U → R be a continuous
function, where U is an open set containing L. Then

sup
α∈L

{
du(α) + F (α)

}
= max

α∈intL(Φ)

{
du(α) + F (α)

}
> max

α∈∂L

{
du(α) + F (α)

}
.

In particular, the maximum of du is only attained on intL.

Proof. Following [12], we define the generalized nonlinear energy by

ΠG(µ, u,Φ) = G

(
hµ(T ),

∫
X

u dµ,

∫
X

Φ dµ

)
,

where G : V → R is any continuous function on an open set V ⊂ R×Rd+1 satisfying
the conditions

∂x0G(x0, x1, . . . , xd+1) > 0,

{(
hµ(T ),

∫
X

u dµ,

∫
X

Φ dµ

)
: µ ∈ M(T )

}
⊂ V. (14)

Let also

Lu =

{(∫
X

u dµ,

∫
X

Φ dµ

)
: µ ∈ M(T )

}
⊂ R× Rd.

When a measure η ∈ M(T ) maximizes the map µ 7→ ΠG(µ, u,Φ) and (T, u,Φ) is
C1 Legendre, it follows from Claim 3 in [12] that

ΠG(η, u,Φ) = sup
(z1,...,zd+1)∈intLu

G(h(z1, . . . , zd+1), z1, . . . , zd+1) (15)

and that the maximum is never attained on ∂Lu. Now we consider the function
G̃ : R× R+ × Rd → R given by

G̃(x0, x1, x2, . . . , xd+1) =
x0
x1

+ F (x2, . . . , xd+1),

where F : U ⊂ Rd → R is any continuous function on some open set U ⊃ L. Since

∂x0
G̃ = 1/x1 > 0, the function G̃ satisfies (14). Hence, by (15) we obtain

sup
µ∈M(T )

{
hµ(T )∫
X
u dµ

+ F

(∫
X

Φ dµ

)}
= sup

(z1,...,zd+1)∈intLu

{
h(z1, . . . , zd+1)

z1
+ F (z2, . . . , zd+1)

}
=
h(z∗1 , z

∗
2 , . . . , z

∗
d+1)

z∗1
+ F (z∗2 , . . . , z

∗
d+1)

for some (z∗1 , z
∗
2 , . . . , z

∗
d+1) ∈ intLu. In other words, there exists ν ∈ M(T ) with∫

X
u dν = z∗1 and

∫
X
Φ dν = (z∗2 , . . . , z

∗
d+1) such that

sup
µ∈M(T )

{
hµ(T )∫
X
u dµ

+ F

(∫
X

Φ dµ

)}
=

hν(T )∫
X
u dν

+ F

(∫
X

Φ dν

)
.

Therefore,

sup
α∈L

{
du(α) + F (α)

}
=

hν(T )∫
X
u dν

+ F

(∫
X

Φ dν

)
= max

α∈intL

{
du(α) + F (α)

}
with

∫
X
Φ dν ∈ intL, which completes the proof. □

In a similar direction, we also have the following result. Let Hθ be the set of
real-valued Hölder continuous functions with exponent θ.
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Theorem 11 ([7, Theorem 14]). Let T be a topologically mixing subshift of finite
type, a C1+γ diffeomorphism with a hyperbolic set, or a C1+γ map with a repeller.
Then there exists a residual set O ⊂ (Hθ)

d such that for each Φ ∈ O we have

du|∂L ≡ 0 and L = intL. (16)

In particular, either du ≡ 0 or du does not attain a maximum on ∂L.

Motivated by Theorem 11, we say that a pair (T,Φ) is typical if it satisfies (16).
The next result gives a relation between the dimension spectrum and the non-

linear topological pressure, and shows how the maximizing points for the linear
dimension spectrum on L play an important role on the “size” of level sets with
divergent points.

Theorem 12. Let T : X → X be a continuous map of a compact metric space such
that the metric entropy µ 7→ hµ(T ) is upper semicontinuous and htop(T ) < ∞.
Suppose that u : X → R is a strictly positive continuous function, Φ = {ϕ1, . . . , ϕd}
is a collection of real-valued continuous functions on X and assume that there exists
a dense subspace D(X) ⊂ C0(X) such that every ξ ∈ D(X) has a unique equilibrium
measure. Then the following properties hold:

1. If in addition (T, u,Φ) is C1 Legendre or (T,Φ) is typical, then

max
α∈intL

dimu Cα = dimuX.

In particular, a compact set A ⊂ intL contains a maximizing point for the
u-dimension function du|L if and only if

dimu CA = dimuX.

2. If in addition (T,Φ) is C1 Legendre with an abundance of ergodic measures,
and the functions h and du are continuous on L, then

max
α∈intL

dimu Cα = PGu
(Φ) = dimuX, (17)

where Gu : Rd → R is a continuous function such that Gu(α)|L = du(α) −
h(α) and PGu

(Φ) is the nonlinear topological pressure for (Gu,Φ). In par-
ticular, a compact set A ⊂ intL contains a maximizing point for the u-
dimension function du|L if and only if

dimu CA = PGu
(Φ) = dimuX.

3. All the maximizing points for the u-dimension function are in ∂L if and only
if for each compact set A ⊂ intL we have

dimu CA < max
α∈L

du(α) = dimuX.

In particular, (T, u,Φ) is not C1 Legendre.

Proof. The first item follows from combining Proposition 10, the definition of typ-
ical pairs and Theorem 2. Now we prove item 2. Consider the continuous function

G̃u(α) = du(α)− h(α) for α ∈ L. Since L ⊂ Rd is compact, one can find a contin-

uous function Gu : Rd → R such that Gu|L = G̃u|L (see for example Theorem 4.16
in [20]). Since (T,Φ) is C1 Legendre, it follows from Theorem 3.16 in [12] that every
maximizing point of h+Gu belongs to intL. By Theorem 2, du(α) = dimu Cα for
all α ∈ intL, and we obtain

max
α∈L

du(α) = max
α∈intL

du(α) = max
α∈intL

dimu Cα. (18)
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Now consider the set Mα =
{
µ ∈ M(T ) :

∫
X
Φ dµ = α

}
. Since (T,Φ) has an

abundance of ergodic measures, we can apply the nonlinear variational principle to
obtain

PGu
(Φ) = sup

η∈M(T )

{
hη(T ) +Gu

(∫
X

Φ dη

)}
= sup

α∈L
sup

η∈Mα

{
hη(T ) +Gu

(∫
X

Φ dη

)}
= sup

α∈L
sup

η∈Mα

{hη(T ) +Gu(α)}

= sup
α∈L

{h(α) +Gu(α)} = max
α∈L

du(α).

(19)

By the definitions of classical topological pressure and u-dimension, one can see
that PX(−dimuXu) = 0. Hence, it follows from (18) that

dimuX =
hν(T )∫
X
u dν

≤ max
α∈L

du(α) = max
α∈intL

dimu Cα,

where ν ∈ M(T ) is an equilibrium measure for the function −dimuXu. By Theo-
rem A3.1 in [30], we have dimu Cα ≤ dimuX for each α ∈ intL. Hence, it follows
that dimuX = maxα∈intL dimu Cα. Together with (18) and (19), this establishes
identity (17).

By Theorem 2, for each compact set A ⊂ intL, we have dimu CA = maxα∈A Cα.
In this case, it follows from (13) that

dimu CA = max
α∈A

dimu Cα = max
α∈A

du(α).

Hence, if a set A contains a maximizing point α∗ for the function du|L, then we get

dimu CA = dimu Cα∗ = du(α
∗) = dimuX.

On the other hand, when a set A contains no maximizing point for du on L, then

dimu CA < max
α∈L

du(α) = dimuX.

To prove item 3, note that if there exists A ⊂ intL with dimu CA = dimuX,
then there is a point α∗ ∈ A such that dimu Cα∗ = dimuX = maxα∈L du(α). In
other words, α∗ ∈ intL is a maximizing point for du|L. □

Remark 5. Note that the equivalence between level sets with distinct limit points
and nonlinear levels sets described in Lemma 1 allows one to give the same type
of information as in Theorem 12, although now with respect to nonlinear level sets
(see Section 8).

The first item in Theorem 12 gives two different types of setups (that may inter-
sect) where one can find proper level sets of full dimension, and this property only
depends on the localization of the maximizing points for the u-dimension function
(or the entropy function) on L. Therefore, the dimensions of the sets CA do not
depend necessarily on the shape or “size” of the sets A ⊂ L (see Figure 3). Analo-
gously, the second item in Theorem 12 gives a relation between the u-dimension and
the nonlinear topological pressure, and indicates that for C1 Legendre pairs with
an abundance of ergodic measures, some level sets with divergent points can have
full dimension (or full entropy). Finally, the third item in Theorem 12 describes a
similar dependence on the localization of the maxima of the u-dimension function,
for more general systems (those satisfying the hypotheses of Theorem 2).

We already saw that many classical hyperbolic and expanding dynamical systems
satisfy the C1 Legendre property. Now we consider some examples of pairs with
an abundance of ergodic measures. We first recall an important related notion. A
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A A′

•

•

•

•

•

•

•

•

α∗
1

α∗
2

α∗
3

β∗
1

β∗
3

β∗
2

β∗
4

β∗
5

B
L

L

Figure 3. On the left: all the maximizing points {α∗
1, α

∗
2, α

∗
3}

for the u-dimension function are in intL. In this case, dimuX =
dimu CA > dimu CA′ . On the right: all the maximizing points
{β∗

1 , β
∗
2 , β

∗
3 , β

∗
4 , β

∗
5} for the u-dimension function are in ∂L. In this

case, dimuX > dimu CB .

map T is said to have entropy density of ergodic measures if for every µ ∈ M(T )
there exist ergodic measures νn ∈ M(T ) for n ∈ N such that νn → µ in the
weak∗ topology and hνn

(T ) → hµ(T ) when n → ∞. If T has entropy density of
ergodic measures, then the pair (T,Φ) has an abundance of ergodic measures for
any family of continuous functions Φ. It is known that mixing subshifts of finite
type and mixing locally maximal hyperbolic sets have entropy density of ergodic
measures (see [18, Theorem B] and [32, Theorem 2.1]). In addition, any continuous
map T of a compact metric space with the weak specification property such that
the entropy map µ 7→ hµ(T ) is upper semicontinuous also has entropy density
of ergodic measures (see [15]). As a consequence, some examples of pairs (T,Φ)
with an abundance of ergodic measures include expansive maps with specification
or weak specification, topologically mixing diffeomorphisms with locally maximal
hyperbolic sets, subshifts of finite type, sofic shifts and β-shifts, together with any
family of continuous functions Φ.

Observe that in item 2 of Theorem 12 we required the entropy and u-dimension
functions to be continuous on L, although in general these are only upper semi-
continuous. This issue was considered in the literature in the context of rotation
theory, where h|L is also called the localized entropy function. It was showed in [21]
that for a compact convex set K ⊂ Rd, the property that every concave upper
semicontinuous function on K is continuous is equivalent to K being a polyhedron.
We note that L is a polyhedron for subshifts of finite type with locally constant
potentials, and in fact with certain nonlocally constant potentials (see [23, 26, 41]).
This guarantees the continuity of h on L. Furthermore, in the same setups, if du
is concave on L, then it is also continuous. In the one-dimensional case, it is easy
to see that every concave upper semicontinuous function on L ⊂ R is continuous
on L. On the other hand, as showed in [40], this is not always the case in higher
dimensions, where h may be discontinuous at the boundary of L even for the full
shift and Lipschitz continuous functions.

7. Nontypical points and full measures

Using the existence of nonlinear full measures obtained in Section 3.1, here we
study the u-dimension of nonlinear irregular sets while extending several results
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in [8]. The main element of our approach is that nonlinear full measures can be ap-
proximated by or are in fact distinguishing measures (as introduced in that paper).

Let T : X → X be a continuous map of a compact metric space, Ψ = {ψ1, . . . , ψd}
a collection of real-valued continuous functions, and F : U ⊂ Rd → Rp a continuous
function, where U is an open set containing L. We define the nonlinear irregular
set (with respect to F ) by

IF =

{
x ∈ X : lim

n→∞
F

(
1

n
Snψ1(x), . . . ,

1

n
Snψd(x)

)
does not exist

}
.

The set X can be decomposed in the form

X = IF ∪
⋃

β∈Rp

CF
β ,

a nonlinear counterpart of the multifractal decomposition of X (see [30] and refer-
ences within). Considering the (individual linear) irregular sets

B(ψj) =

{
x ∈ X : lim

n→∞

1

n
Snψj(x) does not exist

}
,

one can check that
IF ⊂ B(ψ1) ∪ · · · ∪B(ψd).

Moreover, we note that in general B(ψ1)∩ · · · ∩B(ψd) may not be contained in IF .
This means that, a priori, the nonlinear irregular sets may be smaller than the
linear irregular sets. A natural question is thus how large is IF from the point of
view of dimension and, more specifically, under what hypotheses one can show that
dimu IF = dimuX.

The following notion was introduced in [8].

Definition 1. Let Gi = {gin : X → R}n∈N for i = 1, . . . ,m be sequences of contin-
uous functions. A collection of measures {µ1, . . . , µk} on X is called distinguishing
for G1, . . . , Gm if for every 1 ≤ i ≤ m there exist distinct integers j1 = j1(i) and
j2 = j2(i) in [1, k] and numbers aij1 ̸= aij2 such that

lim
n→∞

gin(x) = aij1 for µj1-almost every x ∈ X,

lim
n→∞

gin(x) = aij2 for µj2-almost every x ∈ X.

We also need the following result.

Theorem 13 ([8, Theorem 7.2]). Let σ : X → X be a one-sided or two-sided
subshift satisfying the specification property and let {µ1, . . . , µk} be a collection of
ergodic σ-invariant distinguishing measures for G1, . . . , Gm. If u : X → R is a
strictly positive Hölder continuous function, then

dimu B(G1, . . . , Gm) ≥ min{dimu µ1, . . . ,dimu µk},
where

B(G1, . . . , Gm) =
{
x ∈ X : lim

n→∞
gin(x) does not exist for i = 1, . . . ,m

}
.

Based on Theorem 12, we introduce a property that is relevant for our purposes.
Let (T, u,Φ) be C1 Legendre. Then the first item in Theorem 12 guarantees the
existence of α∗ ∈ intL such that dimu Cα∗ = dimuX. We say that a function
F : U ⊃ L→ Rp satisfies the void property with respect to (T, u,Φ) if the parameter
β ∈ Rp with α∗ ∈ F−1β is such that intF−1β = ∅ (with respect to the norm of Rd).
For example, every C1 function without critical points satisfies the void property
with respect to any C1 Legendre pair since then any set F−1β ⊂ Rd is a manifold
of dimension d− 1.

Now we state the main result of this section.
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Theorem 14. Let σ : X → X be a one-sided or two-sided topologically mixing
subshift of finite type, Ψ = {ψ1, . . . , ψd} a collection of real-valued Hölder con-
tinuous functions on X and u : X → R+ a Hölder continuous function such that
the cohomology classes of 1, u, ψ1, . . . , ψd are linearly independent. Suppose that
F = (F1, . . . , Fp) : U ⊃ L → Rp is such that each Fk : U → R is a continuous
function satisfying the void property with respect to (T, u,Ψ), where U ⊂ Rd is an
open set. Then

dimu IF = dimuX.

Proof. Write

F (x1, . . . , xd) =
(
F1(x1, . . . , xd), . . . , Fp(x1, . . . , xd)

)
for (x1, . . . , xd) ∈ U,

and for each k = 1, . . . , p define the nonlinear irregular sets

IFk
=

{
x ∈ X : lim sup

n→∞
Fk

(
1

n
SnΨ(x)

)
> lim inf

n→∞
Fk

(
1

n
SnΨ(x)

)}
.

Then clearly

IFk
⊂ IF ⊂

p⋃
j=1

IFj
for every k ∈ {1, . . . , p} (20)

and whenever IF ̸= ∅, there exists ℓ ∈ {1, . . . , p} such that IFℓ
̸= ∅.

Since every Hölder continuous function has a unique equilibrium measure with
respect to any topologically mixing subshift of finite type and (σ, u,Ψ) is a C1

Legendre pair, one can apply Theorems 6 and 12. We consider the sequence of
real-valued functions Gℓ = (Gℓ

n)n∈N given by Gℓ
n(x) = Fℓ

(
1
nSnΨ(x)

)
for every

x ∈ X and n ∈ N. By the first item in Theorem 12 and Theorem 6, there exist
α∗
1 ∈ intL and a σ-invariant ergodic measure να∗

1
such that∫

X

Ψ dνα∗
1
= α∗

1 and dimu να∗
1
= dimu Cα∗

1
= dimuX. (21)

Take β1 = F (α∗
1) and ε > 0. Since the linear spectrum α 7→ dimu Cα is continuous

on intL and, by assumption, Fℓ satisfies the void property with respect to (T, u,Ψ),
there exist δ > 0 and α∗

2 ∈ B(α∗
1, δ)/F

−1
ℓ β1 ⊂ intL such that dimu Cα∗

2
= dimuX−

ε/2. By Theorem 6, there exists an ergodic σ-invariant measure να∗
2
such that∫

X

Ψ dνα∗
2
= α∗

2 and dimu να∗
2
= dimu Cα∗

2
≥ dimuX − ε. (22)

Now let β2 = Fℓ(α
∗
2). By Birkhoff’s Ergodic Theorem and the continuity of Fℓ, we

have

lim
n→∞

Gℓ
n(x) = Fℓ

(∫
X

Ψ dνα∗
1

)
= β1 for να∗

1
-almost every x ∈ X,

lim
n→∞

Gℓ
n(x) = Fℓ

(∫
X

Ψ dνα∗
2

)
= β2 for να∗

2
-almost every x ∈ X.

Since α∗
2 /∈ F−1

ℓ β1, we have β2 ̸= β1, which readily implies that {να∗
1
, να∗

2
} is a

collection of distinguishing measures for the sequence Gℓ. Hence, it follows directly
from Theorem 13 together with (20), (21) and (22) that

dimu IF ≥ dimu IFℓ
≥ min{dimu να∗

1
,dimu να∗

2
} ≥ dimuX − ε.

The arbitrariness of ε guarantees that dimu IF = dimuX. □

Remark 6. The void property allows one to avoid some pathological cases, where
there might exist ε > 0 and β ∈ Rp such that if dimu Cα ≥ dimuX − ε, then
α ∈ F−1β. In these cases, the continuity of the linear spectrum α 7→ dimu Cα on
intL forces that intF−1β ̸= ∅.
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Remark 7. It follows from the proof of Theorem 14 that if the set F (intL) ⊂ Rp

has more than one element, then the existence of distinguishing measures implies
that IF ̸= ∅. Moreover, when F−1

ℓ β1, F
−1
ℓ β2 ⊂ intL, it follows from Theorem 6

that dimu C
Fℓ

βj
= dimu να∗

j
for j = 1, 2, in which case the collection of distinguishing

measures {να∗
1
, να∗

2
} for Gℓ is composed of nonlinear full measures.

Remark 8. Some related nonlinear multifractal problems were discussed by Huang,
Tian and Wang in [22], although using different methods. As noted in Remarks
4.3 and 6.2 in [22], their approach cannot decide, for instance, if the irregular set
IF has full topological entropy (with respect to the full shift), where Φ = {ϕ1, ϕ2}
is a collection of real-valued Hölder continuous functions on ΣN and F (x, y) = xy
(this nonlinear function also plays an important role in Section 9). However, since
F satisfies the void property, we can apply Theorem 14 (with u ≡ 1) to show in
particular that htop(σ|IF ) = htop(σ).

We conclude this section by observing that using Markov partitions Theorem 14
can be properly adapted to give corresponding results for uniformly expanding and
hyperbolic maps (see [8]). Moreover, in the conformal case, we also have versions
of Theorem 14 for the Hausdorff dimension (see Theorem 16).

8. Some applications to frequencies of digits

In this section we use the nonlinear conditional variational principles to study
some classes of entropy and dimension spectra. These are related to level sets
defined in terms of frequencies with respect to symbolic dynamics and the repre-
sentation of numbers in different bases.

8.1. Frequency of symbols. We give some explicit examples in the context of
symbolic dynamics. We start with the case of a one-dimensional concave nonlinear
dimension spectrum for the full shift, when the nonlinear function F is invertible.

Given a dynamical system T : X → X, we define the frequency of a point x in a
set E ⊂ X by

τ(x,E) = lim
n→∞

1

n
#{0 ≤ j < n : T j(x) ∈ E} = lim

n→∞

n−1∑
k=0

1E(T
k(x)).

Example 4. Consider Σ = {0, 1}, the shift map σ : ΣN → ΣN, the potential
φ = 1C1

, the function u(ω0ω1 . . . ) = uω0
with u0 = 2 and u1 = 3, and the nonlinear

function F : R → R given by F (x) = cosx. In this case, L = [0, 1] and

CF
β =

{
ω ∈ ΣN : cos τ(ω,C1) = β

}
.

By Theorem 6 we obtain

DF
u (β) = dimu C

F
β = max

µ∈M(σ)

{
hµ(σ)∫
ΣN u dµ

: cosµ(C1) = β

}
= max

µ∈M(σ)

{
hµ(σ)

µ(C1) + 2
: cosµ(C1) = β

}
=

1

arccosβ + 2
max

µ∈M(σ)

{
hµ(σ) : cosµ(C1) = β

}
=

− arccosβ log(arccosβ)− (1− arccosβ) log(1− arccosβ)

arccosβ + 2

for every β ∈ [0, 1] satisfying arccosβ ∈ (0, 1). Notice that β 7→ DF
u (β) is analytic

and concave on its domain (cos 1, 1). Moreover, when β∗ ≈ 0.909, we have

0.281 ≈ dimu Σ
N = DF

u (β
∗) = dimu C

F
β∗ = dimu ηβ∗ ,
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where ηβ∗ is the ergodic nonlinear full measure for β∗. In this case, the level set
CF

β∗ is the only one carrying full dimension. One can also verify that

F−1β∗ = {arccosβ∗} = {α∗ ≈ 0.430} ⊂ intL

with

Du(α
∗) = dimu Σ

N = DF
u (β

∗).

Now we describe a discontinuous nonlinear dimension spectrum.

Example 5. Consider Σ = {0, 1}, the shift map σ : ΣN → ΣN, the constant func-
tion u = 1/17 and the potential ϕ = 15(1C1

). Let also Q : R → R be the cubic
polynomial given by

Q(x) =
1

7
(x3 − 18x2 + 89x− 132) + 3.

Proceeding as before, one can see that L = [0, 15] and that the linear dimension
spectrum is given by

Du(α) = −17α

15
log

(
α

15

)
−

(
17− 17α

15

)
log

(
1− α

15

)
.

We observe that Q is not invertible on L. Moreover, it has the critical points
6±

√
19/3 on L (see Figure 4). Let α∗ = 6+

√
19/3 and take β0 = Q(α∗). Observe

that Q−1β0 = {α∗, α′}, where α′ ∈ (0, α∗). It follows from Theorem 6 that

DQ
u (β0) = max

α∈Q−1β0

Du(α) = Du(α
∗).

On the other hand, for each δ > 0 we have

Du(β0)−D(β0 − δ) ≥ Du(α
∗)−Du(α

′) > 0.

Therefore, and as shown in Figure 4, Q−1β0 ⊂ intL and there is a jump from
DQ

u (β0 − δ) to DQ
u (β0). In other words, the nonlinear dimension spectrum is dis-

continuous at β0. Incidentally, the other critical point of Q does not lead to a
discontinuity for the nonlinear spectrum.

Q(x)

β0
β0β0 − δ

DQ
u (β0)

DQ
u (β0 − δ)

Figure 4. The graph of the nonlinear dimension spectrum DQ
u

with a discontinuity at β0.

Note that in the former examples we have C1 Legendre pairs, and so by Theo-
rem 12 there exist nonlinear level sets of full dimension.
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8.2. Frequency of digits. Now let us consider the uniformly expanding map
Tk : [0, 1] → [0, 1] given by Tkx = kx mod 1 for some positive integer k > 1. We
restrict our attention to 1-locally constant functions ϕj : [0, 1] → R, that is, func-
tions that are constant on intervals of the form [ℓ/k, (ℓ + 1)/k). For convenience,
we write ϕjℓ = ϕj([ℓ/k, (ℓ+ 1)/k)) and we consider the set

Sk =
{
(γ0, . . . , γk−1) ∈ [0, 1]k : γ0 + · · ·+ γk−1 = 1

}
.

For a function ψ : [0, 1] → R given by ψ(0.x1x2 . . . ) = ax1
(with 0.x1x2 · · · written

in base k) for some constants aj ∈ R for j ∈ {0, ..., k}, we have

P (ψ) = log

k−1∑
j=0

exp aj , (23)

where P (ψ) is the classical topological pressure of ψ with respect to Tk.
Using Theorem 6, we give a complete multifractal analysis for the Hausdorff

dimension of the level sets involving nonlinear relations of frequencies of digits.

Theorem 15. For the expanding map Tk, consider a collection Ψ = {ψ1, . . . , ψd}
of 1-locally constant functions ψj : [0, 1] → R and let F : U → Rp be a piecewise
continuous function with finitely many discontinuities and at most at the positive
integer powers of 1/k, where U is an open set containing L ⊂ Rd. Then the
following properties hold:

1. if CF
β ̸= ∅, then

dimH CF
β =

1

log k
sup

µ∈M(T )

{
hµ(Tk) : F

(∫ 1

0

Ψ dµ

)
= β

}

=
1

log k
sup

α∈F−1β

sup
(γ0,...,γk−1)∈Γk(α)

{
−

k−1∑
ℓ=0

γℓ log γℓ

}
,

where α = (α1, . . . , αd) and

Γk(α) =

{
(γ0, . . . , γk−1) ∈ Sk :

k−1∑
ℓ=0

γℓψjℓ = αj for j = 1, . . . , d

}
;

2. if in addition F is continuous and β ∈ Rp satisfies F−1β ∩ L ⊂ intL, then
there exists a point α∗ = (α∗

1, . . . , α
∗
d) ∈ F−1β such that

dimH CF
β =

1

log k
max

(γ0,...,γk−1)∈Γk(α∗)

{
−

k−1∑
ℓ=0

γℓ log γℓ

}

=
1

log k
inf

(q1,...,qd)∈Rd

{
log

k−1∑
ℓ=0

exp

d∑
j=1

qj(ψjℓ − α∗
j )

}
,

(24)

and there exists an ergodic nonlinear full measure νβ for β.

Proof. Item 1 and the first equality in (24) follow directly from combining Theo-
rem 10 in [6] (or Theorem 7.2 in [36]), Theorem 6 and Theorem 11 in [6].

The second equality in (24) follows readily from Theorem 6 using the particular
expression for the topological pressure of 1-locally continuous functions in (23).
Finally, the existence of nonlinear full measures is a consequence of the second item
in Theorem 6. □

Remark 9. In view of Theorem 7.2 in [36] (or Theorem 10 in [6]), one can replace
the hypothesis F−1β ∩ L ⊂ intL by the requirement that the linear dimension
spectrum α 7→ dimu Cα restricted to F−1β attains its maximum at some point in
intL. This is useful for applications when F−1β ∩ ∂L ̸= ∅ (see Example 6).
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We note that Theorem 15 improves Theorem 10 in [6] and can be seen as a
full nonlinear version of Theorem 11 in that paper. The main novelties are the
existence of ergodic measures concentrated on the nonlinear level sets, and the
second equality in (24), where we have a new more direct way of calculating the
Hausdorff dimension. This new formula comes from the relation between the u-
dimension and the classical topological pressure given by Theorem 6.

We continue to write x = 0.x1x2 · · · in base k. Considering the number

τm(x, n) = #{j ∈ {0, . . . , n− 1} : xj = m}

with m ∈ {0, . . . , k − 1}, we define the frequency of m in the base k-representation
of x by

τm(x) = lim
n→∞

τm(x, n)

n
,

whenever the limit exists.

Example 6. Let T3x = 3x mod 1 on [0, 1] and consider the level set

Fβ =
{
x ∈ [0, 1] : τ1(x) = f(τ0(x)) + β

}
,

where f : R → R is given by f(z) = e1−4z/4 and β ∈ R. Letting Ψ = {ψ1, ψ2} with
the 1-locally constant functions ψ1 = 1[0,1/3] and ψ2 = 1[1/3,2/3], we have that

Fβ =
{
x ∈ [0, 1] : G(τ0(x), τ1(x)) = β

}
=: CG

β ,

where G(x, y) = y − f(x). For each (α1, α2) ∈ [0, 1]× [0, 1], consider the level set

C(α1,α2) =
{
x ∈ [0, 1] : τ0(x) = α1 and τ1(x) = α2

}
.

In this case, L = {(α1, α2) ∈ [0, 1] × [0, 1] : α1 + α2 ≤ 1} (this set has nonempty
interior) and

G−1β =

{(
α,
e1−4α

4
+ β

)
: α ∈ R

}
⊂ R2.

For each β with G−1β intersecting intL, it is easy to see that G−1β intersects
∂L at exactly two points. Assume that β ∈ R is such that the maximum of the
spectrum (α1, α2) 7→ dimH C(α1,α2) restricted to G−1β is attained at some point
α∗ = (α∗

1, α
∗
2) ∈ intL. It follows from Theorem 15 that

dimH Fβ = dimH CG
β = max

(α1,α2)∈G−1β
dimH C(α1,α1)

=
1

log 3
inf

(q1,q2)∈R2
log

2∑
ℓ=0

exp

2∑
j=1

qj(ψjℓ − α∗
j ).

Since ψ10 = 1, ψ11 = 0, ψ12 = 0, ψ20 = 0, ψ21 = 1 and ψ22 = 0, we obtain

dimH Fβ =
1

log 3
inf

(q1,q2)∈R2
log(eq1(1−α∗

1)−q2α
∗
2 +eq2(1−α∗

2)−q1α
∗
1 +e−q1α

∗
1−q2α

∗
2 ). (25)

For instance, when β = 0, one can check that the maximum of the linear spectrum
restricted to G−10 is attained at α∗ = (1/4, 1/4) ∈ intL. A computation using (25)
gives that

dimH F0 = dimH C(1/4,1/4) =
3 log 2

2 log 3
≈ 0.946395.

It follows from the proof of Theorem 6 that the ergodic nonlinear full measure
ν0 ∈ M(T3) for β = 0 is the unique equilibrium measure for the 1-locally continuous
potential Hα∗ : [0, 1] → R given by

Hα∗(x) = ⟨(q1, q2), (ψ1 − α∗
1, ψ2 − α∗

2)⟩ − dimH F0 log 3

= − log 2(1[0,1/3](x) + 1[1/3,2/3](x) + 1).
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Since in particular (T3,Ψ) is C1 Legendre, Theorem 12 guarantees, a priori, the
existence of at least one point (α̃1, α̃2) ∈ intL such that

dimH C(α̃1,α̃2) = dimH [0, 1] = 1.

Hence, for β̃ ∈ R such that (α̃1, α̃2) ∈ G−1β̃, we have

dimH Fβ̃ = dimH CG
β̃

= dimH C(α̃1,α̃2) = 1.

By the strict concavity of the linear dimension spectrum on L, the global maximum
is unique, and in this case

(α̃1, α̃2) =

(
1

3
,
1

3

)
and β̃ =

1

12

(
4− 3

e1/3

)
.

The graph of the spectrum β 7→ dimH Fβ can be obtained by a numerical compu-
tation using formula (25). The domain is given by{

β ∈ R : max
α∈L∩G−1β

dimCα = max
α∈intL

dimCα

}
,

which is approximately the open interval (−0.67, 0.5) (see Figure 5).

G−1(0.5)

G−1(β̃)

G−1(0)

G−1(−0.67)

L

1

0−0.6 0.4

Figure 5. The domain and the graph of the nonlinear dimension
spectrum β 7→ dimH Fβ .

We are also able to show that the set of numbers with no well-defined nonlinear
relations between frequencies has full Hausdorff dimension, despite being negligible
from a measure theoretic point of view. The following result is a nonlinear version
of Theorems 1 and 6 in [6].

Theorem 16. For the expanding map Tk, consider a collection Ψ = {ψ1, . . . , ψd}
of 1-locally constant functions ψj : [0, 1] → R and let F = (F1, . . . , Fp) : U → Rp be
a continuous function, where U is an open set containing L ⊂ Rd. If the function
Fj : U → R satisfies the void property with respect to (Tk,Ψ) for j = 1, . . . , p, then

dimH

(
[0, 1]/

⋃
β∈Rp

CF
β

)
= 1.

Proof. One can obtain a particular version of Theorem 13 for the map Tk and
sequences of piecewise Hölder continuous functions with finitely many discontinu-
ities and at most at the positive integer powers of 1/k (see Lemma 1 in [6]). In
particular, this includes sequences of 1-locally constant functions and, using the er-
godic nonlinear full measures given by Theorem 15, one can complete the argument
proceeding as in the proof of Theorem 14. □
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Example 7. Under the assumptions of Example 6, since each G−1β is a curve in L,
the function G satisfies the void property with respect to (T3,Ψ). Hence, it follows
from Theorem 16 that the corresponding nonlinear irregular set with respect to G
has full Hausdorff dimension, that is,

dimH

(
[0, 1]/

⋃
β∈R

Fβ

)
= dimH IG = 1.

9. Relation to multiple ergodic averages

Here we explore some connections with the multifractal analysis of multiple
ergodic averages. More precisely, using Theorem 6 and some results in [19], we
compare different nonlinear dimension spectra and study the irregular sets for some
types of multiple ergodic averages.

Let Σ be a finite set and consider the shift map σ : ΣN → ΣN. Taking a collection
of real-valued Hölder continuous functions Φ = {ϕ1, ϕ2} on ΣN (such that the
cohomology classes of 1, ϕ1, ϕ2 are linearly independent), we define the multiple
ergodic average level set

MA(β) =

{
x ∈ ΣN : lim

n→∞

1

n

n−1∑
k=0

ϕ1(σ
k(x))ϕ2(σ

2k(x)) = β

}
.

The invariant spectrum of MA(β) is defined by

Finv(β) = sup
µ∈Merg(σ)

{dimH µ : µ(MA(β)) = 1}.

When there exists an ergodic σ-invariant measure concentrated onMA(β), it follows
from Theorem 1.5 in [19] that

Finv(β) = sup
µ∈Merg(σ)

{
dimH µ :

∫
ΣN
ϕ1 dµ

∫
ΣN
ϕ2 dµ = β

}
. (26)

Now consider the function F (x, y) = xy. By Proposition 10 and Theorem 2, the
linear spectrum

α 7→ dimH Cα =
1

log#Σ
htop(T |Cα)

attains its maximum on intL. Since the spectrum is also concave on L, for each
β ∈ R with F−1β∩ intL ̸= ∅, the map α 7→ dimH Cα restricted to F−1β∩L attains
a maximal value at some point α∗ ∈ intL. Hence, by Theorem 7.2 in [36] and
Theorem 6, we have

dimH CF
β = sup

α∈F−1β

dimH Cα = dimH Cα∗

= dimH νβ = sup
µ∈Merg(σ)

{
dimH µ : F

(∫
ΣN
ϕ1 dµ,

∫
ΣN
ϕ2 dµ

)
= β

}
,

where νβ is an ergodic nonlinear full measure for β (with νβ(Cα∗) = 1) and

CF
β =

{
x ∈ ΣN : lim

n→∞

1

n2

n−1∑
k=0

ϕ1(σ
k(x))

n−1∑
k=0

ϕ2(σ
k(x)) = β

}
.

Together wth (26), this implies that

dimH CF
β = dimH νβ = Finv(β)

with νβ concentrated on CF
β . And since Finv(β) ≤ dimH MA(β) (see [19]), we

obtain

dimH CF
β = dimH νβ ≤ dimH MA(β). (27)
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In addition, since (σ,Φ) is a C1 Legendre pair, by Theorem 12 there is β∗ ∈ R such
that dimH CF

β∗ = dimH ΣN. Together with (27), this readily implies that MA(β
∗)

also has full Hausdorff dimension. Furthermore, considering the relation with the
classical topological pressure given by Theorem 6, we obtain the following result.

Theorem 17. Let σ : ΣN → ΣN be the shift map and let Φ = {ϕ1, ϕ2} be a collection
of real-valued Hölder continuous functions on ΣN such that the cohomology classes
of 1, ϕ1, ϕ2 are linearly independent. Then for each β with F−1β ∩ intL ̸= ∅ such
that there is a measure µ ∈ Merg(σ) with µ(MA(β)) = 1, the following properties
hold:

1. there exists an ergodic σ-invariant measure νβ concentrated on CF
β such that

dimH MA(β) ≥ Finv(β) = dimH νβ = dimH CF
β

=
1

log#Σ
max

(α1,α2)∈F−1β
inf

(q1,q2)∈R2
P (q1ϕ1 + q2ϕ2 − q1α1 − q2α2),

where P is the classical topological pressure; in particular, there exists a point
(α∗

1, α
∗
2) ∈ intL ∩ F−1β such that

dimH MA(β) ≥
1

log#Σ
inf

(q1,q2)∈R2
P (q1ϕ1 + q2ϕ2 − q1α

∗
1 − q2α

∗
2);

2. there exists at least one parameter β∗ ∈ F (L) ⊂ R such that

dimH MA(β
∗) = Finv(β

∗) = dimH CF
β∗ = dimH ΣN.

Remark 10. In [19] the authors introduced a nonlinear-type topological pressure
to calculate the exact value of the Haudorff dimension of the sets MA(β). By The-
orem 17, one can see explicitly how the classical (linear) topological pressure is
only able to give a lower bound in this framework. Moreover, making a compar-
ison with [19], one can also obtain an expression connecting the classical and the
“nonlinear” pressure introduced in that paper (see Theorem 1.1 in [19]).

In view of Theorem 17, the existence of nonlinear full measures and the notion
of distinguishing measures, one can also study nontypical points with respect to
some multiple ergodic averages. Let IA be the set of points x ∈ ΣN such that the
limit limn→∞An(x) does not exist, where

An(x) =
1

n

n−1∑
k=0

ϕ1(σ
k(x))ϕ2(σ

2k(x)).

Theorem 18. Let σ : ΣN → ΣN be the shift map and let Φ = {ϕ1, ϕ2} be a collection
of real-valued Hölder continuous functions on ΣN such that the cohomology classes
of 1, ϕ1, ϕ2 are linearly independent. If each β with F−1β ∩ intL ̸= ∅ is such that
there is a measure µ ∈ Merg(σ) with µ(MA(β)) = 1, then

dimH IA = dimH ΣN.

Proof. By the second item in Theorem 17, there exists β∗ ∈ F (L) that has asso-
ciated an ergodic nonlinear full measure νβ∗ such that dimH νβ∗ = dimH ΣN. One
can verify that the supremum in (26) (with β replaced by β∗) is attained at some
mixing measure ηβ∗ ∈ Merg(σ). By the mixing property, we have

lim
n→∞

An(x) =

∫
ΣN
ϕ1 dηβ∗

∫
ΣN
ϕ2 dηβ∗ = β∗ for ηβ∗ -almost every x ∈ ΣN.

In particular, ηβ∗(MA(β
∗)) = 1 and Finv(β

∗) = dimH ηβ∗ . The first item in Theo-
rem 17 now gives that dimH ηβ∗ = dimH νβ∗ .

The function F (x, y) = xy satisfies the void property with respect to (σ,Φ),
and so for each ε > 0 there exists β ∈ F (L) with β ̸= β∗ such that dimH νβ =
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dimH ΣN − ε (see the proof of Theorem 14), where νβ is an ergodic nonlinear full
measure for β. Proceeding as above, one can also guarantee the existence of a
measure ηβ ∈ Merg(σ) concentrated on MA(β) and satisfying Finv(β) = dimH ηβ .
Again by the first item in Theorem 17, we obtain dimH ηβ = dimH νβ . In this case,
we also have

lim
n→∞

An(x) = β for ηβ-almost every x ∈ ΣN,

and since β ̸= β∗, the set {ηβ∗ , ηβ} is a collection of ergodic σ-invariant distinguish-
ing measures for the sequence (An)n∈N. Therefore, Theorem 13 yields that

dimH IA ≥ min{dimH ηβ∗ ,dimH ηβ}
= min{dimH νβ∗ ,dimH νβ} = dimH ΣN − ε.

The arbitrariness of ε shows that dimH IA = dimH ΣN. □

To the best of our knowledge, Theorem 18 is the first result in the literature
showing that some irregular sets for multiple ergodic averages have full Hausdorff
dimension.

10. Intermediate entropy and dimension properties

In this section, inspired by the recent work in [17], we study some relations
between intermediate entropy and dimension properties of ergodic measures and
their nonlinear counterparts. Once more, these developments are based on the
existence of ergodic nonlinear full measures as introduced in Section 3.1.

Let Φ = {ϕ1, . . . , ϕd} be a collection of real-valued continuous functions on X,
and let F : U → Rp be a continuous function, where U is an open set containing
the domain L. For each β ∈ F (L) ⊂ Rp, we define

hF (β) = sup
µ∈M(T )

{
hµ(T ) : F

(∫
X

Φ dµ

)
= β

}
.

Moreover, we continue to use the notations EF and DF
u introduced in Section 5.

The following result gives a relation between intermediate entropy properties of
ergodic measures and their nonlinear versions.

Theorem 19. Let T : X → X be a continuous map of a compact metric space such
that the metric entropy µ 7→ hµ(T ) is upper semicontinuous. Let Φ = {ϕ1, . . . , ϕd}
be a collection of real-valued continuous functions on X and assume that F : U →
Rp is a continuous function, where U is an open set containing L. If for all α ∈ intL
and h ∈ [0, h(α)), the set

B(α, h) =

{
µ ∈ Merg(T ) : hµ(T ) = h and

∫
X

Φ dµ = α

}
is a dense Gδ subset of

C(α, h) =

{
µ ∈ M(T ) : hµ(T ) ≥ h and

∫
X

Φ dµ = α

}
,

then for all β ∈ Rp such that F−1β ∩ L ⊂ intL and h′ ∈ [0, hF (β)) the set

BF (β, h′) =

{
µ ∈ Merg(T ) : hµ(T ) = h′ and F

(∫
X

Φ dµ

)
= β

}
is also a dense Gδ subset of

CF (β, h′) =

{
µ ∈ M(T ) : hµ(T ) ≥ h′ and F

(∫
X

Φ dµ

)
= β

}
.



34 L. BARREIRA, C. E. HOLANDA, X. HOU, AND X. TIAN

Proof. By Proposition 5.7 in [16], Merg(T ) is a Gδ subset of M(T ). Therefore,{
µ ∈ Merg(T ) : hµ(T ) ≥ h′ and F

(∫
X

Φ dµ

)
= β

}
is a Gδ subset of CF (β, h′). Since the metric entropy is upper semicontinuous, the
set {µ ∈ M(T ) : hµ(T ) ∈ [h′, h′ + 1/n)} is open in {µ ∈ M(T ) : hµ(T ) ≥ h′} for
each n ∈ N. This implies that{

µ ∈ M(T ) : hµ(T ) = h′ and F

(∫
X

Φdµ

)
= β

}
is a Gδ subset of CF (β, h′). Thus, the set BF (β, h′) is a Gδ subset of CF (β, h′).
Finally, BF (β, h′) is dense in CF (β, h′), which completes the proof. □

As a consequence of Theorem 19 together with Theorems 3 and 6, we obtain a
corresponding nonlinear result for intermediate entropy properties of ergodic mea-
sures.

Corollary 20. Let T : X → X be a continuous map of a compact metric space such
that the metric entropy µ 7→ hµ(T ) is upper semicontinuous. Let Φ = {ϕ1, . . . , ϕd}
be a collection of real-valued continuous functions on X and assume that F : U →
Rp is a continuous function, where U is an open set containing L. Assume that
for all α ∈ intL and h ∈ [0, h(α)), the set B(α, h) is a dense Gδ subset of C(α, h).
Then for each β ∈ Rp with F−1β ∩ L ⊂ intL we have

[0, hF (β)) ⊂
{
hµ(T ) : µ ∈ Merg(T ) and F

(∫
X

Φ dµ

)
= β

}
.

Moreover, if there is a dense subspace D(X) ⊂ C0(X) such that every ξ ∈ D(X)
has a unique equilibrium measure with respect to T , then for each β ∈ Rp with
F−1β ∩ L ⊂ intL we have

[0,EF (β)) ⊂
{
hµ(T ) : µ ∈ Merg(T ) and F

(∫
X

Φdµ

)
= β

}
.

In particular, when htop(T ) <∞ and span{ϕ1, . . . , ϕd, u} ⊂ D(X), for each β ∈ Rp

with F−1β ∩ L ⊂ intL we have

[0,EF (β)] =

{
hµ(T ) : µ ∈ Merg(T ) and F

(∫
X

Φdµ

)
= β

}
=

{
hµ(T ) : µ ∈ M(T ) and F

(∫
X

Φdµ

)
= β

}
.

Now assume that T : X → X is a homeomorphism. We say that T is expansive if
there exists a constant c > 0 such that for any x ̸= y ∈ X, we have d(T i(x), T i(y)) >
c for some i ∈ Z. Given δ > 0, a sequence {xn}n∈Z is called a δ-pseudo-orbit if
d(T (xn), xn+1) < δ for any n ∈ Z. Moreover, given ε > 0, we say that {xn}n∈Z is
ε-shadowed by some y ∈ X if d(Tn(y), xn) < ε for any n ∈ Z. Finally, we say that
the map T has the shadowing property if for each ε > 0 there exists δ > 0 such that
any δ-pseudo-orbit is ε-shadowed by some point in X.

Following [17], we say that a homeomorphism T : X → X of a compact metric
space is topologically hyperbolic if X has infinitely many points, and T is expansive
and satisfies the shadowing property. It is well known that locally maximal hyper-
bolic sets for C1 diffeomorphisms are expansive and satisfy the shadowing property
(see for example [24]). It follows from Theorem 6.11 (III) in [17] that if T is a
transitive topologically hyperbolic system, then all the hypotheses of Corollary 20
are satisfied.

Following the proof of Corollary C in [17] (with simple modifications), we obtain
the following result for the u-dimension.
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Theorem 21. Suppose that T : X → X is topologically transitive and topologi-
cally hyperbolic, and let Φ = {ϕ1, . . . , ϕd} be a collection of real-valued continuous
functions on X. Then for each α ∈ intL the set{

dimu µ : µ ∈ Merg(T ) and

∫
X

Φ dµ = α

}
is an interval containing zero, that is,

[0,∆erg
u (α)) ⊂

{
dimu µ : µ ∈ Merg(T ) and

∫
X

Φ dµ = α

}
⊂ [0,∆erg

u (α)],

where ∆erg
u (α) = sup

{
dimu µ : µ ∈ Merg(T ) and

∫
X
Φ dµ = α

}
.

Combining Theorem 21 with Theorems 3 and 6, we obtain a corresponding
nonlinear result for the intermediate u-dimension properties of ergodic measures.

Corollary 22. Suppose that T : X → X is topologically transitive and topologi-
cally hyperbolic, and let Φ = {ϕ1, . . . , ϕd} be a collection of real-valued continuous
functions on X. Then for each β ∈ Rp with F−1β ∩ L ⊂ intL we have

[0,∆erg
u,F (β)) ⊂

{
dimu µ : µ ∈ Merg(T ) and F

(∫
X

Φ dµ

)
= β

}
,

where

∆erg
u,F (β) = sup

{
dimu µ : µ ∈ Merg(T ) and F

(∫
X

Φ dµ

)
= β

}
.

Moreover, if there is a dense subspace D(X) ⊂ C0(X) such that every ξ ∈ D(X)
has a unique equilibrium measure with respect to T , then for each β ∈ Rp with
F−1β ∩ L ⊂ intL we have

[0,DF
u (β)) ⊂

{
hµ(T )∫
X
u dµ

: µ ∈ Merg(T ) and F

(∫
X

Φ dµ

)
= β

}
.

In particular, when htop(T ) <∞ and span{ϕ1, . . . , ϕd, u} ⊂ D(X), for each β ∈ Rp

with F−1β ∩ L ⊂ intL we have

[0,DF
u (β)] =

{
dimu µ : µ ∈ Merg(T ) and F

(∫
X

Φ dµ

)
= β

}
=

{
hµ(T )∫
X
u dµ

: µ ∈ M(T ) and F

(∫
X

Φ dµ

)
= β

}
.

For average conformal hyperbolic maps, similar intermediate Hausdorff dimen-
sion properties for the nonlinear case can also be obtained from Corollary 22 (see
Theorem G in [17]).
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